28,196 research outputs found

    State-variable modelling of CLL resonant converters

    Get PDF
    The paper presents the derivation and application of state-variable models to high-order topologies of resonant converters. In particular, a 3rd order CLL resonant circuit is considered with bridge rectification and both a capacitive output filter (voltage output), and an LC output filter (current output). The state-variable model accuracy is verified against component-based simulation packages (Spice) and practical measurements, and it is shown that the resulting models facilitate rapid analysis compared to their integration-based counterparts (Spice, Saber), without the loss of accuracy normally associated with fundamental mode approximation (FMA) techniques. Moreover, unlike FMA, the models correctly predict the resonant peaks associated with harmonic excitation of the tank resonance. Subsequently, it is shown that excitation of the resonant tank by odd harmonics of the input voltage can be utilised to provide overcurrent protection in the event of an output short-circuit. Further, through judicious control of operating frequency, it is shown that 'inductive' zero voltage switching (ZVS) can still be obtained, facilitating reductions in gate-drive switching losses, thereby improving efficiency and thermal management of the supply under fault conditions. Although the results are ultimately generic to other converter counterparts, measured results from two prototype 36 V input, 11-14.4V output, 3rd - order CLL converters are included to practically demonstrate the attributes of the proposed analysis and control schemes

    Integrated multilevel converter and battery management

    Get PDF
    A cascaded H-bridge multilevel converter is proposed as a BLDC drive incorporating real-time battery management. Intelligent H-bridges are used to monitor battery cells whilst simultaneously increasing their performance by reducing the variation between cells and controlling their discharge profiles

    Universality of collapsing two-dimensional self-avoiding trails

    Full text link
    Results of a numerically exact transfer matrix calculation for the model of Interacting Self-Avoiding Trails are presented. The results lead to the conclusion that, at the collapse transition, Self-Avoiding Trails are in the same universality class as the O(n=0) model of Blote and Nienhuis (or vertex-interacting self-avoiding walk), which has thermal exponent ν=12/23\nu=12/23, contrary to previous conjectures.Comment: Final version, accepted for publication in Journal of Physics A; 9 pages; 3 figure

    Helical automatic approaches of helicopters with microwave landing systems

    Get PDF
    A program is under way to develop a data base for establishing navigation and guidance concepts for all-weather operation of rotorcraft. One of the objectives is to examine the feasibility of conducting simultaneous rotorcraft and conventional fixed-wing, noninterfering, landing operations in instrument meteorological conditions at airports equipped with microwave landing systems (MLSs) for fixed-wing traffic. An initial test program to investigate the feasibility of conducting automatic helical approaches was completed, using the MLS at Crows Landing near Ames. These tests were flown on board a UH-1H helicopter equipped with a digital automatic landing system. A total of 48 automatic approaches and landings were flown along a two-turn helical descent, tangent to the centerline of the MLS-equipped runway to determine helical light performance and to provide a data base for comparison with future flights for which the helical approach path will be located near the edge of the MLS coverage. In addition, 13 straight-in approaches were conducted. The performance with varying levels of state-estimation system sophistication was evaluated as part of the flight tests. The results indicate that helical approaches to MLS-equipped runways are feasible for rotorcraft and that the best position accuracy was obtained using the Kalman-filter state-estimation with inertial navigation systems sensors
    • …
    corecore