2,590 research outputs found

    A bimodal correlation between host star chromospheric emission and the surface gravity of hot Jupiters

    Get PDF
    The chromospheric activity index logR'HK of stars hosting transiting hot Jupiters appears to be correlated with the planets' surface gravity. One of the possible explanations is based on the presence of condensations of planetary evaporated material located in a circumstellar cloud that absorbs the CaII H&K and MgII h&k resonance line emission flux, used to measure chromospheric activity. A larger column density in the condensations, or equivalently a stronger absorption in the chromospheric lines, is obtained when the evaporation rate of the planet is larger, which occurs for a lower gravity of the planet. We analyze here a sample of stars hosting transiting hot Jupiters tuned in order to minimize systematic effects (e.g., interstellar medium absorption). Using a mixture model, we find that the data are best fit by a two-linear-regression model. We interpret this result in terms of the Vaughan-Preston gap. We use a Monte Carlo approach to best take into account the uncertainties, finding that the two intercepts fit the observed peaks of the distribution of logR'HK for main-sequence solar-like stars. We also find that the intercepts are correlated with the slopes, as predicted by the model based on the condensations of planetary evaporated material. Our findings bring further support to this model, although we cannot firmly exclude different explanations. A precise determination of the slopes of the two linear components would allow one to estimate the average effective stellar flux powering planetary evaporation, which can then be used for theoretical population and evolution studies of close-in planets.Comment: 23 pages, 4 figures, 1 table, accepted for publication in ApJ

    On the consistency of magnetic field measurements of Ap stars: lessons learned from the FORS1 archive

    Full text link
    CONTEXT. The ESO archive of FORS1 spectropolarimetric observations may be used to create a homogeneous database of magnetic field measurements. However, no systematic comparison of FORS field measurements to those obtained with other instruments has been undertaken so far. AIMS. We exploit the FORS archive of circular spectropolarimetric data to examine in a general way how reliable and accurate field detections obtained with FORS are. METHODS. We examine the observations of Ap and Bp stars, on the grounds that almost all of the unambiguous detections of magnetic fields in the FORS1 archive are in these kinds of stars. We assess the overall quality of the FORS1 magnetic data by examining the consistency of field detections with what is known from previous measurements obtained with other instruments, and we look at patterns of internal consistency. RESULTS. FORS1 magnetic measurements are fully consistent with those made with other instruments, and the internal consistency of the data is excellent. However, it is important to recognise that each choice of grism and wavelength window constitutes a distinct instrumental measuring system, and that simultaneous field measurements in different instrumental systems may produce field strength values that differ up to 20 %, or more. Furthermore, we found that field measurements using hydrogen lines only yield results that meaningfully reflect the field strength as sampled specifically by lines of hydrogen for stars with effective temperatures above about 9000 K. CONCLUSIONS. In general the magnetic field measurements of Ap and Bp stars obtained with FORS1 are of excellent quality, accuracy and precision, and FORS1 provides an extremely useful example that offers valuable lessons for field measurements with other low- resolution Cassegrain spectropolarimeters.Comment: 14 pages, 8 figures. Accepted for publication in section 13 of Astronomy & Astrophysics on 13 October 201

    On the dependence of the spectral parameters on the observational conditions in homogeneous time dependent models of the TeV blazars

    Full text link
    Most of current models of TeV blazars emission assume a Synchrotron Self-Compton mechanism where relativistic particles emit both synchrotron radiation and Inverse Compton photons. For sake of simplicity, these models usually consider only steady state emission. The spectral features are thus only related to the shape of the particle distribution, and do not depend on the timing of observations. In this letter, we study the effect of, firstly, the lag between the beginning of the injection of the fresh particles and the trigger of the observation, and secondly, of a finite injection duration. We illustrate these effects considering an analytical time-dependent model of the synchrotron emission by a monoenergetic distribution of leptons. We point out that the spectral shape can be in fact very dependent on observational conditions if the particle injection term is time-dependent, particularly taking into account the effect of the time averaging procedure on the final shape of the SED. Consequences on the acceleration process are also discussed.Comment: Letter to Editor, accepted for publication in A&

    The FORS1 catalogue of stellar magnetic field measurements

    Full text link
    The FORS1 instrument on the ESO Very Large Telescope was used to obtain low-resolution circular polarised spectra of nearly a thousand different stars, with the aim of measuring their mean longitudinal magnetic fields. A catalogue of FORS1 magnetic measurements would provide a valuable resource with which to better understand the strengths and limitations of this instrument and of similar low-dispersion, Cassegrain spectropolarimeters. However, FORS1 data reduction has been carried out by a number of different groups using a variety of reduction and analysis techniques. Our understanding of the instrument and our data reduction techniques have both improved over time. A full re-analysis of FORS1 archive data using a consistent and fully documented algorithm would optimise the accuracy and usefulness of a catalogue of field measurements. Based on the ESO FORS pipeline, we have developed a semi-automatic procedure for magnetic field determinations, which includes self-consistent checks for field detection reliability. We have applied our procedure to the full content of circular spectropolarimetric measurements of the FORS1 archive. We have produced a catalogue of spectro-polarimetric observations and magnetic field measurements for about 1400 observations of about 850 different objects. The spectral type of each object has been accurately classified. We have also been able to test different methods for data reduction is a systematic way. The resulting catalogue has been used to produce an estimator for an upper limit to the uncertainty in a field strength measurement of an early type star as a function of the signal-to-noise ratio of the observation. While FORS1 is not necessarily an optimal instrument for the discovery of weak magnetic fields, it is very useful for the systematic study of larger fields, such as those found in Ap/Bp stars and in white dwarfs.Comment: Accepted for publication by A&

    Detection of magnetic field in the B2 star ρ\rho Oph A with ESO FORS2

    Full text link
    Circumstantial evidence suggests that magnetism and enhanced X-ray emission are likely correlated in early B-type stars: similar fractions of them (\sim 10 %) are strong and hard X-ray sources and possess strong magnetic fields. It is also known that some B-type stars have spots on their surface. Yet up to now no X-ray activity associated with spots on early-type stars was detected. In this Letter we report the detection of a magnetic field on the B2V star ρ\rho Oph A. Previously, we assessed that the X-ray activity of this star is associated with a surface spot, herewith we establish its magnetic origin. We analyzed FORS2 ESO VLT spectra of ρ\rho Oph A taken at two epochs and detected a longitudinal component of the magnetic field of order of 500\sim500 G in one of the datasets. The detection of the magnetic field only at one epoch can be explained by stellar rotation which is also invoked to explain observed periodic X-ray activity. From archival HARPS ESO VLT high resolution spectra we derived the fundamental stellar parameters of ρ\rho Oph A and further constrained its age. We conclude that ρ\rho Oph A provides strong evidence for the presence of active X-ray emitting regions on young magnetized early type stars.Comment: 4 pages, 1 figure, 2 tables, accepted as a "Letter to the Editor" to Astronomy & Astrophysic
    corecore