1,379 research outputs found
Spike-Train Responses of a Pair of Hodgkin-Huxley Neurons with Time-Delayed Couplings
Model calculations have been performed on the spike-train response of a pair
of Hodgkin-Huxley (HH) neurons coupled by recurrent excitatory-excitatory
couplings with time delay. The coupled, excitable HH neurons are assumed to
receive the two kinds of spike-train inputs: the transient input consisting of
impulses for the finite duration (: integer) and the sequential input
with the constant interspike interval (ISI). The distribution of the output ISI
shows a rich of variety depending on the coupling strength and the
time delay. The comparison is made between the dependence of the output ISI for
the transient inputs and that for the sequential inputs.Comment: 19 pages, 4 figure
Finite temperature phase diagram of spin-1/2 bosons in two-dimensional optical lattice
We study a two-species bosonic Hubbard model on a two-dimensional square
lattice by means of quantum Monte Carlo simulations and focus on finite
temperature effects. We show in two different cases, ferro- and
antiferromagnetic spin-spin interactions, that the phase diagram is composed of
solid Mott phases, liquid phases and superfluid phases. In the
antiferromagnetic case, the superfluid (SF) is polarized while the Mott
insulator (MI) and normal Bose liquid (NBL) phases are not. On the other hand,
in the ferromagnetic case, none of the phases is polarized. The
superfluid-liquid transition is of the Berezinsky-Kosterlitz-Thouless type
whereas the solid-liquid passage is a crossover.Comment: 9 pages, 13 figure
From paradox to pattern shift: Conceptualising liminal hotspots and their affective dynamics
This article introduces the concept of liminal hotspots as a specifically psychosocial and sociopsychological type of wicked problem, best addressed in a process-theoretical framework. A liminal hotspot is defined as an occasion characterised by the experience of being trapped in the interstitial dimension between different forms-of-process. The paper has two main aims. First, to articulate a nexus of concepts associated with liminal hotspots that together provide general analytic purchase on a wide range of problems concerning “troubled” becoming. Second, to provide concrete illustrations through examples drawn from the health domain. In the conclusion, we briefly indicate the sense in which liminal hotspots are part of broader and deeper historical processes associated with changing modes for the management and navigation of liminality
Combination chemotherapy for choroidal melanoma: ex vivo sensitivity to treosulfan with gemcitabine or Cytosine arabinoside
Treatment of choroidal melanoma by chemotherapy is usually unsuccessful, with response rates of less than 1% reported for dacarbazine (DTIC)-containing regimens which show 20% or more response rates in skin melanoma. Recently, we reported the activity of several cytotoxic agents against primary choroidal melanoma in an ATP-based tumour chemosensitivity assay (ATP-TCA). In this study, we have used the same method to examine the sensitivity of choroidal melanoma to combinations suggested by our earlier study. Tumour material from 36 enucleated eyes was tested against a battery of single agents and combinations which showed some activity in the previous study. The combination of treosulfan with gemcitabine or cytosine arabinoside showed consistent activity in 70% and 86% of cases, respectively. Paclitaxel was also active, particularly in combination with treosulfan (47%) or mitoxantrone (33%). Addition of paclitaxel to the combination of treosulfan + cytosine analogue added little increased sensitivity. For treosulfan + cytosine arabinoside, further sequence and timing experiments showed that simultaneous administration gave the greatest suppression, with minor loss of inhibition if the cytosine analogue was given 24 h after the treosulfan. Administration of cytosine analogue 24 h before treosulfan produced considerably less inhibition at any concentration. While we have so far been unable to study metastatic tumour from choroidal melanoma patients, the combination of treosulfan with gemcitabine or cytosine arabinoside shows activity ex vivo against primary tumour tissue. Clinical trials are in progress. © 1999 Cancer Research Campaig
Conversion processes for high-viscosity heavy crude oil in catalytic and noncatalytic aquathermolysis
© 2014 Springer Science+Business Media. We have conducted experiments on noncatalytic and catalytic aquathermolysis of high-viscosity heavy crude oil from the Ashal'cha field (Tatarstan) in the presence of a crude oil-soluble nickel- and cobalt-containing catalyst, a proton donor, and a rock-forming mineral. We have identified the characteristic features of the change in the constituent composition, the hydrocarbon composition, and the fractional composition, the rheological properties of the crude oils, the average molecular weight of the asphaltenes for catalytic and noncatalytic conversion processes. For catalytic aquathermolysis, we established significant de novo formation of light 70°C-250°C fractions (by 23 wt.%), n-alkylbenzenes, an increase in the oil content by a factor of 1.3, a decrease in the resin content by a factor of 1.7, and a decrease in the viscosity by 98 rel.%. The major difference between the conversion of crude oil in the presence of the catalyst and the proton donor involves activation of degradation reactions at C-C, C-N, C-O, C-S bonds and blocking of polymerization reactions and accordingly less coke formation. We observed sorption of the catalyst components on rock
Liver transplantation as last-resort treatment for patients with bile duct injuries following cholecystectomy: A multicenter analysis
Background Liver transplantation (LT) has been used as a last resort in patients with end-stage liver disease due to bile duct injuries (BDI) following cholecystectomy. Our study aimed to identify and evaluate factors that cause or contribute to an extended liver disease that requires LT as ultimate solution, after BDI during cholecystectomy. Methods Data from 8 high-volume LT centers relating to patients who underwent LT after suffering BDI during cholecystectomy were prospectively collected and retrospectively analyzed. Results Thirty-four patients (16 men, 18 women) with a median age of 45 (range 22-69) years were included in this study. Thirty of them (88.2%) underwent LT because of liver failure, most commonly as a result of secondary biliary cirrhosis. The median time interval between BDI and LT was 63 (range 0-336) months. There were 23 cases (67.6%) of postoperative morbidity, 6 cases (17.6%) of post-transplant 30-day mortality, and 10 deaths (29.4%) in total after LT. There was a higher probability that patients with concomitant vascular injury (hazard ratio 10.69, P=0.039) would be referred sooner for LT. Overall survival following LT at 1, 3, 5 and 10 years was 82.4%, 76.5%, 73.5% and 70.6%, respectively. Conclusion LT for selected patients with otherwise unmanageable BDI following cholecystectomy yields acceptable long-term outcomes
Quantum Computing and Quantum Simulation with Group-II Atoms
Recent experimental progress in controlling neutral group-II atoms for
optical clocks, and in the production of degenerate gases with group-II atoms
has given rise to novel opportunities to address challenges in quantum
computing and quantum simulation. In these systems, it is possible to encode
qubits in nuclear spin states, which are decoupled from the electronic state in
the S ground state and the long-lived P metastable state on the
clock transition. This leads to quantum computing scenarios where qubits are
stored in long lived nuclear spin states, while electronic states can be
accessed independently, for cooling of the atoms, as well as manipulation and
readout of the qubits. The high nuclear spin in some fermionic isotopes also
offers opportunities for the encoding of multiple qubits on a single atom, as
well as providing an opportunity for studying many-body physics in systems with
a high spin symmetry. Here we review recent experimental and theoretical
progress in these areas, and summarise the advantages and challenges for
quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information
Processing" on "Quantum Information with Neutral Particles
Intra- and inter-individual genetic differences in gene expression
Genetic variation is known to influence the amount of mRNA produced by a gene. Given that the molecular machines control mRNA levels of multiple genes, we expect genetic variation in the components of these machines would influence multiple genes in a similar fashion. In this study we show that this assumption is correct by using correlation of mRNA levels measured independently in the brain, kidney or liver of multiple, genetically typed, mice strains to detect shared genetic influences. These correlating groups of genes (CGG) have collective properties that account for 40-90% of the variability of their constituent genes and in some cases, but not all, contain genes encoding functionally related proteins. Critically, we show that the genetic influences are essentially tissue specific and consequently the same genetic variations in the one animal may up-regulate a CGG in one tissue but down-regulate the same CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. The implication of this study is that this class of genetic variation can result in complex inter- and intra-individual and tissue differences and that this will create substantial challenges to the investigation of phenotypic outcomes, particularly in humans where multiple tissues are not readily available.


Siderite micro-modification for enhanced corrosion protection
Production of oil and gas results in the creation of carbon dioxide (CO₂) which when wet is extremely corrosive owing to the speciation of carbonic acid. Severe production losses and safety incidents occur when carbon steel (CS) is used as a pipeline material if corrosion is not properly managed. Currently corrosion inhibitor (CI) chemicals are used to ensure that the material degradation rates are properly controlled; this imposes operational constraints, costs of deployment and environmental issues. In specific conditions, a naturally growing corrosion product known as siderite or iron carbonate (FeCO₃) precipitates onto the internal pipe wall providing protection from electrochemical degradation. Many parameters influence the thermodynamics of FeCO₃ precipitation which is generally favoured at high values of temperatures, pressure and pH. In this paper, a new approach for corrosion management is presented; micro-modifying the corrosion product. This novel mitigation approach relies on enhancing the crystallisation of FeCO₃ and improving its density, protectiveness and mechanical properties. The addition of a silicon-rich nanofiller is shown to augment the growth of FeCO₃ at lower pH and temperature without affecting the bulk pH. The hybrid FeCO₃ exhibits superior general and localised corrosion properties. The findings herein indicate that it is possible to locally alter the environment in the vicinity of the corroding steel in order to grow a dense and therefore protective FeCO₃ film via the incorporation of hybrid organic-inorganic silsesquioxane moieties. The durability and mechanical integrity of the film is also significantly improved
- …