321 research outputs found
Permanent Magnet Heater for a Precise Control of Temperature in Aluminum Billets before Extrusion
Abstract Aluminum billets are heated at a prescribed temperature before hot working in gas or induction or resistance furnaces. Temperature distribution variable along the billet axis, or 'taper profile' with the initial section hotter than the final part of the billet, improves the extrusion process (isothermal extrusion). Taper temperature distribution is typically realized in induction heater thanks to the accurate control that this technology allows in thermal processing. Permanent Magnet Heaters, PMH, have been recently proposed as a high efficiency solution for the heating of electrically conductive materials. The optimal design of a Permanent Magnet Heater is presented with reference to a real industrial case. The design has been carried out by means of transient magnetic and thermal 2D and 3D Finite Element Models coupled with multiobjective optimization algorithms
Numerical modelling of silicon melt purification in induction directional solidification system
Solar grade silicon production is an energy intensive and harmful to the environment process. Yet 40% of this valuable product material is lost into sawdust (kerf loss) during wafering. The kerf waste from Fixed Abrasive Sawing of PV silicon wafers is pelletized and then remelted in an induction furnace. The furnace has a square cross-section quartz crucible, surrounded by graphite susceptors and heated by an induction coil that enables directional solidification of the new ingot. Top and bottom 'pancake' coils provide additional temperature control. Once melted, silicon becomes electrically conductive and subject to stirring by induction. To recycle the silicon, particulate impurities (due to the sawing, condensed silicon oxides or carbides) need to be removed. Flow control and the electromagnetic Leenov-Kolin force are used to expel particulates, through a novel dual frequency induction scheme. Three-dimensional, multi-physics numerical modelling captures the electromagnetic, fluid-flow and heat-transfer effects in this process. The presented results show it is possible to retain the impurity particles on the sides of the solidified ingot where they can be sliced off and removed
Multi-physics and multi-objective design of a benchmark device: a problem of inverse induction heating
In the paper, a bi-objective optimization problem characterized by a multi-physics field analysis is investigated. The optimal design of a pancake inductor, related to the design of industrial devices for the controlled heating of a graphite disk is considered as the benchmark problem. The expected goal of the optimization process is to improve temperature uniformity in the disk as well as electrical efficiency of the inductor. The optimized device is designed using a multi-physics problem: magnetic problem for electrical efficiency computation and thermal problem for temperature uniformity computation. The solution of the relevant bi-objective optimization problem is based on a modified multi-objective genetic algorithm in the class of Non-dominated Sorting Genetic Algorithm. The proposed algorithm exploits the migration concept to vary the population genetic characteristics during optimization process in order to improve the Pareto front approximation
Optimization of Compensation Network for a Wireless Power Transfer System in Dynamic Conditions: A Circuit Analysis Approach
The paper is focused on the optimization of the compensation network of a wireless power transfer system (WPTS) intended to operate in dynamic conditions. A laboratory prototype of a WPTS has been taken as a reference in this work, allowing for the experimental data and all the numerical models here presented to reproduce the configuration of the existing device. The numerical model has been used to perform FEM analysis with variable relative positions of the emitting and receiving coil to simulate the movement in a 'recharge while driving' condition. Inductive lumped parameters, i.e., self and mutual inductances computed from FEM results, have been used for the optimal design of the compensation network necessary for the WPTS operation. The optimal design of the resonance circuits has been developed by defining objective functions, aiming to achieve these goals: transmitted power must be as constant as possible when the vehicle is in movement and the electrical efficiency must be satisfactory high in most of the coupling conditions. The performances of the optimized network are finally compared and discussed
Detection of replicative Kashmir Bee Virus and Black Queen Cell Virus in Asian hornet Vespa velutina (Lepelieter 1836) in Italy
Information concerning the pathogenic role of honey bee viruses in invasive species are still scarce. The aim of this investigation was to assess the presence of several honey bee viruses, such as Black Queen Cell Virus (BQCV), Kashmir Bee Virus (KBV), Slow Paralysis Virus (SPV), Sac Brood Virus (SBV), Israeli Acute Paralysis Virus (IAPV), Acute Bee Paralysis Virus (ABPV), Chronic Bee Paralysis Virus (CBPV), in Vespa velutina specimens collected in Italy during 2017. Results of this investigation indicate that among pathogens, replicative form of KBV and BQCV were detected, assessing the spillover effect of both these viruses from managed honey bees to hornets
Detection and characterization of viral pathogens associated with reproductive failure in wild boars in central Italy
Suid herpesvirus 1, porcine circovirus 2 and porcine parvovirus are causative agents of reproductive failures in swine and are widely diffused in the wild boar population. No data describing the impact of those viruses on the reproductive performance of wild boar are so far available. We aimed to investigate the ability of the above viruses to infect foetuses of free-ranging pregnant wild boar sows living in a highly-populated area. Molecular investigation revealed that although all investigated viruses were detected in pregnant sows, only herpesvirus and circovirus were detected in the foetuses. Phylogenetic analysis revealed a close relationship between the strains circulating in wild boar and those already described in domestic swine. This study highlights the importance of monitoring the circulation of pathogens that are shared between domestic and wild pigs. This information is essential for the pig industry to avoid possible economic losses. Wild boar and domestic swine share several pathogens, including viruses responsible for reproductive failures, representing an important sanitary and economic risk for the swine industry. Among them, suid herpesvirus 1 (SuHV-1), porcine circovirus 2 (PCV2) and porcine parvovirus 1 (PPV1) are widely diffused in the wild boar population. Unfortunately, little is known about their pathogenetic mechanisms and impact on the reproductive parameters of wild animals. This study aims to investigate the presence of viruses responsible for reproductive failure in pregnant wild boar sows and their foetuses. The investigation was conducted on 46 pregnant wild boar and their foetuses by molecular analysis; a phylogenetic study was performed on the positive samples. All of the investigated pathogens were identified in sows, while only herpesvirus and circovirus were detected in the tissues of their foetuses. Phylogenetic analysis revealed that the viral sequences obtained from the positive wild boars were closely related to those previously identified in domestic swine belonging to the same study areas. The results suggest that SuHV-1 and PCV2 can infect wild boar foetuses, with a possible impact on wild boar reproductive performance. Moreover, our data highlight the importance of continuous monitoring of swine pathogens circulating in wild environments, so as to carry out adequate sanitary actions
A deep learning approach to improve the control of dynamic wireless power transfer systems
In this paper, an innovative approach for the fast estimation of the mutual inductance between transmitting and receiving coils for Dynamic Wireless Power Transfer Systems (DWPTSs) is implemented. To this end, a Convolutional Neural Network (CNN) is used; an image representing the geometry of two coils that are partially misaligned is the input of the CNN, while the output is the corresponding inductance value. Finite Element Analyses are used for the computation of the inductance values needed for CNN training. This way, thanks to a fast and accurate inductance estimated by the CNN, it is possible to properly manage the power converter devoted to charge the battery, avoiding the wind up of its controller when it attempts to transfer power in poor coupling conditions
Effect of oral administration of 1,3-1,6 β-glucans in DWV naturally infected newly emerged bees (apis mellifera L.)
Honeybee pathogens have an important role in honeybee colony mortality and colony losses; most of them are widely spread and necessitate worldwide solutions to contrast honeybee's decline. Possible accepted solutions to cope with the spread of honeybee's pathogens are focused on the study of experimental protocols to enhance the insect's immune defenses. Honeybee's artificial diet capable to stimulate the immune system is a promising field of investigation as ascertained by the introduction of 1,3-1,6 β-glucans as a dietary supplement. In this work, by collecting faecal samples of honeybees exposed to different dietary conditions of 1,3-1,6 β-glucans (0.5% and 2% w/w), it has been possible to investigate the Deformed wing virus (DWV) viral load kinetic without harming the insects. Virological data obtained by a one-step TaqMan RT-PCR highlighted the ability of 1,3-1,6 β-glucans to reduce the viral load at the 24th day of rearing. The results indicated that the diet supplemented with 1,3-1,6 β-glucans was associated with a dose-dependent activation of phenoloxidase. The control group showed a higher survival rate than the experimental groups. This research confirmed 1,3-1,6 β-glucans as molecules able to modulate honeybees' defense pathways, and this is the first report in which the kinetic of DWV infection in honeybee faeces has been monitored by a RT-qPCR
Bluetongue disease
Bluetongue (BT) is a noncontagious OIE-listed disease of domestic and wild ruminants caused by a virus (Bluetongue virus—BTV) of the Orbivirus genus within the family Reoviridae and transmitted by biting midges of the genus Culicoides. BT is a considerable socioeconomic concern and of major importance for the international trade of animals and animal products. In the past, BT endemic areas were considered those between latitudes 40 °N and 35 °S; however, BT has spread far beyond this traditional range. BTV has multiple serotypes and these serotypes exist in a complex network of serological cross-relationships, varying from partial to no protection between heterologous strains. This chapter summarizes several aspects of BT and BTV with particular emphasis for BTV epidemiology in Sahelian Africa
Identification of two divergent swine Noroviruses detected at the slaughterhouse in North East Italy
Norovirus (NoV) has emerged as one of the major causative agents of non-bacterial, food- and water-borne gastroenteritis in humans, with the main genogroup involved in human outbreaks (GII), which has been detected worldwide in different animal species including swine. A four-month investigation at the slaughterhouse aiming to examine the presence of NoV in the swine in North-Eastern Italy, enabled the detection of two divergent Noroviruses (NoVs) (GII.P11) in two swine farms. This represents the first study in the swine population of North-Eastern Italy, which has paved the way for future integrated virological and epidemiological investigations on swine NoVs
- …