11 research outputs found

    Simulation and analysis of the forward bias current–voltage–temperature characteristics of W/4H-SiC Schottky barrier diodes for temperature-sensing applications

    Get PDF
    Abstract The current-voltage (ID-VD) characteristics of W/4H-SiC Schottky barrier diodes (SBDs) are investigated in the 303–448 K temperature range by means of a numerical simulation study. Results showed a good agreement with measurements for a bias current ranging from 100 nA up to 10 mA. The main device parameters, such as the barrier height and ideality factor are found strongly temperature-dependent. The observed behaviours are interpreted by using the thermionic emission (TE) theory with a single Gaussian distribution of the barrier height (BH). The corresponding Richardson constant is A* = 148.8 Acm−2K−2. This value is close to the theoretical one of 146 Acm−2K−2 for n-type 4H-SiC

    Study and Assessment of Defect and Trap Effects on the Current Capabilities of a 4H-SiC-Based Power MOSFET

    Get PDF
    A numerical simulation study accounting for trap and defect effects on the current-voltage characteristics of a 4H-SiC-based power metal-oxide-semiconductor field effect transistor (MOSFET) is performed in a wide range of temperatures and bias conditions. In particular, the most penalizing native defects in the starting substrate (i.e., EH6/7 and Z1/2) as well as the fixed oxide trap concentration and the density of states (DoS) at the 4H-SiC/SiO2 interface are carefully taken into account. The temperature-dependent physics of the interface traps are considered in detail. Scattering phenomena related to the joint contribution of defects and traps shift the MOSFET threshold voltage, reduce the channel mobility, and penalize the device current capabilities. However, while the MOSFET on-state resistance (RON) tends to increase with scattering centers, the sensitivity of the drain current to the temperature decreases especially when the device is operating at a high gate voltage (VGS). Assuming the temperature ranges from 300 K to 573 K, RON is about 2.5 MΩ·µm2 for VGS > 16 V with a percentage variation ΔRON lower than 20%. The device is rated to perform a blocking voltage of 650 V

    Performance Evaluation of Silicon and GaN Switches for a Small Wireless Power Transfer System

    No full text
    In the last few years, the wide diffusion of rechargeable devices has fueled the research interest in wireless power transfer (WPT) technology that offers advantages such as safety, flexibility, and ease of use. Different standards have been developed over the years but a significant part of the global interest is focused on the inductive resonant wireless power transfer. By increasing the resonance frequency, an improvement in the transfer efficiency between transmit and receive coils is generally observed, at the expense, however, of an increase in losses in the switching devices that constitute the transmitting and receiving circuits. This study concerned the performance evaluation of a WPT transmitting circuit built using Gallium Nitride (GaN) or conventional silicon (Si) switching devices, to assess their specific contribution to the overall efficiency of the system. The overall performance of two circuits, respectively based on GaN HEMTs and Si MOSFETs, were compared at frequencies of the order of MHz under different operating conditions. The theory and design choices regarding the WPT circuit, the coils, and the resonant network are also discussed. The comparison shows that the GaN circuit typically performs better than the Si one, but a clear advantage of the GaN solution cannot be established under all operating conditions

    Acoustic Simulation for Performance Evaluation of Ultrasonic Ranging Systems

    No full text
    The recent growing interest in indoor positioning applications has paved the way for the development of new and more accurate positioning techniques. The envisioned applications, include people and asset tracking, indoor navigation, as well as other emerging market applications, require fast and precise positioning. To this end, the effectiveness and high accuracy and refresh rate of positioning systems based on ultrasonic signals have been already demonstrated. Typically, positioning is obtained by combining multiple ranging. In this work, it is shown that the performance of a given ultrasonic airborne ranging technique can be thoroughly analyzed using renowned academic acoustic simulation software, originally conceived for the simulation of echographic transducers and systems. Here, in order to show that the acoustic simulation software can be profitably applied to ranging systems in air, an example is provided. Simulations are performed for a typical ultrasonic chirp, from an ultrasound emitter, in a typical office room. The ranging performances are evaluated, including the effects of acoustic diffraction and air frequency dependent absorption, when the signal-to-noise ratio (SNR) decreases from 30 to −20 dB. The ranging error, computed over a point grid in the space, and the ranging cumulative error distribution is shown for different SNR levels. The proposed approach allowed us to estimate a ranging error of about 0.34 mm when the SNR is greater than 0 dB. For SNR levels down to −10 dB, the cumulative error distribution shows an error below 5 mm, while for lower SNR, the error can be unlimited

    Study and Assessment of Defect and Trap Effects on the Current Capabilities of a 4H-SiC-Based Power MOSFET

    No full text
    A numerical simulation study accounting for trap and defect effects on the current-voltage characteristics of a 4H-SiC-based power metal-oxide-semiconductor field effect transistor (MOSFET) is performed in a wide range of temperatures and bias conditions. In particular, the most penalizing native defects in the starting substrate (i.e., EH6/7 and Z1/2) as well as the fixed oxide trap concentration and the density of states (DoS) at the 4H-SiC/SiO2 interface are carefully taken into account. The temperature-dependent physics of the interface traps are considered in detail. Scattering phenomena related to the joint contribution of defects and traps shift the MOSFET threshold voltage, reduce the channel mobility, and penalize the device current capabilities. However, while the MOSFET on-state resistance (RON) tends to increase with scattering centers, the sensitivity of the drain current to the temperature decreases especially when the device is operating at a high gate voltage (VGS). Assuming the temperature ranges from 300 K to 573 K, RON is about 2.5 MΩ·µm2 for VGS > 16 V with a percentage variation ΔRON lower than 20%. The device is rated to perform a blocking voltage of 650 V
    corecore