576 research outputs found

    To claim or not to claim

    Get PDF
    Verslag van een themabijeenkomst welke als doel had om de sector concrete handvatten aan te reiken voor het aanvragen én realiseren van een gezondheidsclaim

    Lebowitz Inequalities for Ashkin-Teller Systems

    Full text link
    We consider the Ashkin-Teller model with negative four-spin coupling but still in the region where the ground state is ferromagnetic. We establish the standard Lebowitz inequality as well as the extension that is necessary to prove a divergent susceptibility.Comment: Ams-TeX, 12 pages; two references added, final version accepted for publication in Physica

    Critical Droplets and Phase Transitions in Two Dimensions

    Full text link
    In two space dimensions, the percolation point of the pure-site clusters of the Ising model coincides with the critical point T_c of the thermal transition and the percolation exponents belong to a special universality class. By introducing a bond probability p_B<1, the corresponding site-bond clusters keep on percolating at T_c and the exponents do not change, until p_B=p_CK=1-exp(-2J/kT): for this special expression of the bond weight the critical percolation exponents switch to the 2D Ising universality class. We show here that the result is valid for a wide class of bidimensional models with a continuous magnetization transition: there is a critical bond probability p_c such that, for any p_B>=p_c, the onset of percolation of the site-bond clusters coincides with the critical point of the thermal transition. The percolation exponents are the same for p_c<p_B<=1 but, for p_B=p_c, they suddenly change to the thermal exponents, so that the corresponding clusters are critical droplets of the phase transition. Our result is based on Monte Carlo simulations of various systems near criticality.Comment: Final version for publication, minor changes, figures adde

    Exact sampling from non-attractive distributions using summary states

    Full text link
    Propp and Wilson's method of coupling from the past allows one to efficiently generate exact samples from attractive statistical distributions (e.g., the ferromagnetic Ising model). This method may be generalized to non-attractive distributions by the use of summary states, as first described by Huber. Using this method, we present exact samples from a frustrated antiferromagnetic triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss the advantages and limitations of the method of summary states for practical sampling, paying particular attention to the slowing down of the algorithm at low temperature. In particular, we show that such a slowing down can occur in the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at http://wol.ra.phy.cam.ac.uk/mackay/exac

    Rejection-free Geometric Cluster Algorithm for Complex Fluids

    Full text link
    We present a novel, generally applicable Monte Carlo algorithm for the simulation of fluid systems. Geometric transformations are used to identify clusters of particles in such a manner that every cluster move is accepted, irrespective of the nature of the pair interactions. The rejection-free and non-local nature of the algorithm make it particularly suitable for the efficient simulation of complex fluids with components of widely varying size, such as colloidal mixtures. Compared to conventional simulation algorithms, typical efficiency improvements amount to several orders of magnitude

    Poisson approximations for the Ising model

    Full text link
    A dd-dimensional Ising model on a lattice torus is considered. As the size nn of the lattice tends to infinity, a Poisson approximation is given for the distribution of the number of copies in the lattice of any given local configuration, provided the magnetic field a=a(n)a=a(n) tends to -\infty and the pair potential bb remains fixed. Using the Stein-Chen method, a bound is given for the total variation error in the ferromagnetic case.Comment: 25 pages, 1 figur

    Dynamic Critical Behavior of the Chayes-Machta Algorithm for the Random-Cluster Model. I. Two Dimensions

    Full text link
    We study, via Monte Carlo simulation, the dynamic critical behavior of the Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang dynamics for the q-state Potts ferromagnet to non-integer q \ge 1. We consider spatial dimension d=2 and 1.25 \le q \le 4 in steps of 0.25, on lattices up to 1024^2, and obtain estimates for the dynamic critical exponent z_{CM}. We present evidence that when 1 \le q \lesssim 1.95 the Ossola-Sokal conjecture z_{CM} \ge \beta/\nu is violated, though we also present plausible fits compatible with this conjecture. We show that the Li-Sokal bound z_{CM} \ge \alpha/\nu is close to being sharp over the entire range 1 \le q \le 4, but is probably non-sharp by a power. As a byproduct of our work, we also obtain evidence concerning the corrections to scaling in static observables.Comment: LaTeX2e, 75 pages including 26 Postscript figure

    Crossover from Isotropic to Directed Percolation

    Full text link
    Directed percolation is one of the generic universality classes for dynamic processes. We study the crossover from isotropic to directed percolation by representing the combined problem as a random cluster model, with a parameter rr controlling the spontaneous birth of new forest fires. We obtain the exact crossover exponent yDP=yT1y_{DP}=y_T-1 at r=1r=1 using Coulomb gas methods in 2D. Isotropic percolation is stable, as is confirmed by numerical finite-size scaling results. For D3D \geq 3, the stability seems to change. An intuitive argument, however, suggests that directed percolation at r=0r=0 is unstable and that the scaling properties of forest fires at intermediate values of rr are in the same universality class as isotropic percolation, not only in 2D, but in all dimensions.Comment: 4 pages, REVTeX, 4 epsf-emedded postscript figure

    Dynamic Critical Behavior of the Swendsen-Wang Algorithm: The Two-Dimensional 3-State Potts Model Revisited

    Get PDF
    We have performed a high-precision Monte Carlo study of the dynamic critical behavior of the Swendsen-Wang algorithm for the two-dimensional 3-state Potts model. We find that the Li-Sokal bound (τint,Econst×CH\tau_{int,E} \geq const \times C_H) is almost but not quite sharp. The ratio τint,E/CH\tau_{int,E} / C_H seems to diverge either as a small power (0.08\approx 0.08) or as a logarithm.Comment: 35 pages including 3 figures. Self-unpacking file containing the LaTeX file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and eqsection.sty) and the 3 Postscript figures. Revised version fixes a normalization error in \xi (with many thanks to Wolfhard Janke for finding the error!). To be published in J. Stat. Phys. 87, no. 1/2 (April 1997

    Theory of continuum percolation I. General formalism

    Full text link
    The theoretical basis of continuum percolation has changed greatly since its beginning as little more than an analogy with lattice systems. Nevertheless, there is yet no comprehensive theory of this field. A basis for such a theory is provided here with the introduction of the Potts fluid, a system of interacting ss-state spins which are free to move in the continuum. In the s1s \to 1 limit, the Potts magnetization, susceptibility and correlation functions are directly related to the percolation probability, the mean cluster size and the pair-connectedness, respectively. Through the Hamiltonian formulation of the Potts fluid, the standard methods of statistical mechanics can therefore be used in the continuum percolation problem.Comment: 26 pages, Late
    corecore