964 research outputs found

    Parameters Influencing Electromagnetically Induced Transparency

    Get PDF
    This thesis investigates the parameters of achieving electromagnetically induced transparency, or EIT. The technique of EIT manipulates the properties of atoms to partially cancel the usual absorption of laser light. In this experiment, the effect was observed using the D1 line of rubidium vapor and a Λ -configuration between the degenerate magnetic sublevels of the 5S1/2(F=1) and 5P1/2(F=1) hyperfine states. Among the parameters investigated were the linear and circular polarization of the light used to drive the transitions, the size of the laser beam used, the effects of the temperature of the rubidium interaction cell on EIT, the density of the rubidium atoms in the interaction cell, and the effects of changing the power of the fields used to drive the transitions. Careful measurements of these parameters were made

    Bleeding the laboratory mouse: Not all methods are equal

    Get PDF
    The laboratory mouse is the model most frequently used in hematologic studies and assessment of blood parameters across a broad range of disciplines. Often, analysis of blood occurs in a nonterminal manner. However, the small body size of the mouse limits collection based on volume, frequency, and accessible sites. Commonly used sites in the mouse include the retro-orbital sinus, facial vein, tail vein, saphenous vein, and heart. The method of blood acquisition varies considerably across laboratories and is often not reported in detail. In this study, we report significant alterations in blood parameters, particularly of total white blood cells, specific populations of dendritic cells and myeloid-derived suppressor cells, and hematopoietic progenitor cells, as a result of site and manner of sampling. Intriguingly, warming of mice prior to tail bleeding was found to significantly alter blood values. Our findings suggest that the same method should be used across an entire study, that mice should be warmed prior to tail bleeds to make levels uniform, and that accurate description of bleeding methods in publications should be provided to allow for interpretation of comparative reports and inter- and intralaboratory experimental variability

    DFT Virtual Screening Identifies Rhodium–Amidinate Complexes As Potential Homogeneous Catalysts for Methane-to-Methanol Oxidation

    Get PDF
    In the search for new organometallic catalysts for low-temperature selective conversion of CH_4 to CH_3OH, we apply quantum mechanical virtual screening to select the optimum combination of ligand and solvent on rhodium to achieve low barriers for CH_4 activation and functionalization to recommend for experimental validation. Here, we considered Rh because its lower electronegativity compared with Pt and Pd may allow it to avoid poisoning by coordinating media. We report quantum mechanical predictions (including implicit and explicit solvation) of the mechanisms for Rh^(III)(NN) and Rh^(III)(NN^F) complexes [where (NN) = bis(N-phenyl)benzylamidinate and (NN^F) = bis(N-pentafluorophenyl)pentafluorobenzylamidinate] to catalytically activate and functionalize methane using trifluoroacetic acid (TFAH) or water as a solvent. In particular, we designed the (NN^F) ligand as a more electrophilic analogue to the (NN) ligand, and our results predict the lowest transition state barrier (ΔG‡ = 27.6 kcal/mol) for methane activation in TFAH from a pool of four different classes of ligands. To close the catalytic cycle, the functionalization of methylrhodium intermediates was also investigated, involving carbon–oxygen bond formation via S_N2 attack by solvent, or S_R2 attack by a vanadium oxo. Activation barriers for the functionalization of methylrhodium intermediates via nucleophilic attack are lower when the solvent is water, but CH_4 activation barriers are higher. In addition, we have found a correlation between CH_4 activation barriers and rhodium–methyl bond energies that allow us to predict the activation transition state energies for future ligands, as well

    Arene C–H activation using Rh(I) catalysts supported by bidentate nitrogen chelates

    Get PDF
    The Rh(I) complexes [(^(Fl)DAB)Rh(coe)(TFA)] (1) and [(BOZO)Rh(coe)(TFA)] (2) [^(Fl)DAB = N,N-bis-(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene, coe = cyclooctene, TFA = trifluoroacetate, BOZO = bis(2-oxazolin-2-yl)] are efficient catalyst precursors for H/D exchange between arenes and DTFA. Catalyst precursor 1 exhibits a TOF of 0.06 s^(−1) at 150 °C for benzene H/D exchange. DFT calculations revealed that H/D exchange through reversible oxidative addition or internal electrophilic substitution of benzene is a viable pathway

    Broadband analysis techniques for Herschel/HIFI spectral surveys of chemically rich star-forming regions

    Full text link
    The Heterodyne Instrument for the Far Infrared (HIFI) aboard the Herschel Space Observatory has acquired high-resolution broadband molecular spectra of star-forming regions in a wavelength range that is mostly inaccessible from ground-based astronomical observatories. These spectral surveys provide new insight into the chemical composition and physical properties of molecular clouds. In this manuscript, we present initial results from the HIFI spectral survey of the Sagittarius B2(N) molecular cloud, which contains spectral features assigned to at least 40 different molecules in a range of physical environments. While extensive line blending is observed due to the chemical complexity of this region, reliable molecular line identifications can be made, down to the noise floor, due to the large number of transitions detected for each species in the 1.2 THz survey bandwidth. This allows for the extraction of new weakly emitting species from the line forest. These HIFI surveys will be an invaluable archival resource for future investigations into interstellar chemistry.Comment: 14 pages, 2 figures; accepted to the Journal of Molecular Spectroscop

    Guiding Ethical Principles in Engineering Biology Research

    Get PDF
    Engineering biology is being applied toward solving or mitigating some of the greatest challenges facing society. As with many other rapidly advancing technologies, the development of these powerful tools must be considered in the context of ethical uses for personal, societal, and/or environmental advancement. Researchers have a responsibility to consider the diverse outcomes that may result from the knowledge and innovation they contribute to the field. Together, we developed a Statement of Ethics in Engineering Biology Research to guide researchers as they incorporate the consideration of long-term ethical implications of their work into every phase of the research lifecycle. Herein, we present and contextualize this Statement of Ethics and its six guiding principles. Our goal is to facilitate ongoing reflection and collaboration among technical researchers, social scientists, policy makers, and other stakeholders to support best outcomes in engineering biology innovation and development

    Lime pretreatment of sugar beet pulp and evaluation of synergy between ArfA, ManA and XynA from Clostridium cellulovorans on the pretreated substrate

    Get PDF
    Sugar beet pulp (SBP) is a waste product from the sugar beet industry and could be used as a potential biomass feedstock for second generation biofuel technology. Pretreatment of SBP with ‘slake lime’ (calcium hydroxide) was investigated using a 23 factorial design and the factors examined included lime loading, temperature and time. The pretreatment was evaluated for its ability to enhance enzymatic degradation using a combination of three hemicellulases, namely ArfA (an arabinofuranosidase), ManA (an endo-mannanase) and XynA (an endo-xylanase) from C. cellulovorans to determine the conditions under which optimal activity was facilitated. Optimal pretreatment conditions were found to be 0.4 g lime/g SBP, with 36 h digestion at 40 °C. The synergistic interactions between ArfA, ManA and XynA from C. cellulovorans were subsequently investigated on the pretreated SBP. The highest degree of synergy was observed at a protein ratio of 75% ArfA to 25% ManA, with a specific activity of 2.9 U/g protein. However, the highest activity was observed at 4.2 U/g protein at 100% ArfA. This study demonstrated that lime treatment enhanced enzymatic hydrolysis of SBP. The ArfA was the most effective hemicellulase for release of sugars from pretreated SBP, but the synergy with the ManA indicated that low levels of mannan in SBP were probably masking the access of the ArfA to its substrate. XynA displayed no synergy with the other two hemicellulases, indicating that the xylan in the SBP was not hampering the access of ArfA or ManA to their substrates and was not closely associated with the mannan and arabinan in the SBP
    • 

    corecore