4,549 research outputs found

    Second-order critical lines of spin-S Ising models in a splitting field with Grassmann techniques

    Full text link
    We propose a method to study the second-order critical lines of classical spin-SS Ising models on two-dimensional lattices in a crystal or splitting field, using an exact expression for the bare mass of the underlying field theory. Introducing a set of anticommuting variables to represent the partition function, we derive an exact and compact expression for the bare mass of the model including all local multi-fermions interactions. By extension of the Ising and Blume-Capel models, we extract the free energy singularities in the low momentum limit corresponding to a vanishing bare mass. The loci of these singularities define the critical lines depending on the spin S, in good agreement with previous numerical estimations. This scheme appears to be general enough to be applied in a variety of classical Hamiltonians

    Limit Cycles in Four Dimensions

    Full text link
    We present an example of a limit cycle, i.e., a recurrent flow-line of the beta-function vector field, in a unitary four-dimensional gauge theory. We thus prove that beta functions of four-dimensional gauge theories do not produce gradient flows. The limit cycle is established in perturbation theory with a three-loop calculation which we describe in detail.Comment: 12 pages, 1 figure. Significant revision of the interpretation of our result. Improved description of three-loop calculatio

    Defect Motion and Lattice Pinning Barrier in Josephson-Junction Ladders

    Full text link
    We study motion of domain wall defects in a fully frustrated Josephson-unction ladder system, driven by small applied currents. For small system sizes, the energy barrier E_B to the defect motion is computed analytically via symmetry and topological considerations. More generally, we perform numerical simulations directly on the equations of motion, based on the resistively-shunted junction model, to study the dynamics of defects, varying the system size. Coherent motion of domain walls is observed for large system sizes. In the thermodynamical limit, we find E_B=0.1827 in units of the Josephson coupling energy.Comment: 7 pages, and to apear in Phys. Rev.

    Weibull-type limiting distribution for replicative systems

    Full text link
    The Weibull function is widely used to describe skew distributions observed in nature. However, the origin of this ubiquity is not always obvious to explain. In the present paper, we consider the well-known Galton-Watson branching process describing simple replicative systems. The shape of the resulting distribution, about which little has been known, is found essentially indistinguishable from the Weibull form in a wide range of the branching parameter; this can be seen from the exact series expansion for the cumulative distribution, which takes a universal form. We also find that the branching process can be mapped into a process of aggregation of clusters. In the branching and aggregation process, the number of events considered for branching and aggregation grows cumulatively in time, whereas, for the binomial distribution, an independent event occurs at each time with a given success probability.Comment: 6 pages and 5 figure

    The aa-theorem and the Asymptotics of 4D Quantum Field Theory

    Full text link
    We study the possible IR and UV asymptotics of 4D Lorentz invariant unitary quantum field theory. Our main tool is a generalization of the Komargodski-Schwimmer proof for the aa-theorem. We use this to rule out a large class of renormalization group flows that do not asymptote to conformal field theories in the UV and IR. We show that if the IR (UV) asymptotics is described by perturbation theory, all beta functions must vanish faster than (1/lnμ)1/2(1/|\ln\mu|)^{1/2} as μ0\mu \to 0 (μ\mu \to \infty). This implies that the only possible asymptotics within perturbation theory is conformal field theory. In particular, it rules out perturbative theories with scale but not conformal invariance, which are equivalent to theories with renormalization group pseudocycles. Our arguments hold even for theories with gravitational anomalies. We also give a non-perturbative argument that excludes theories with scale but not conformal invariance. This argument holds for theories in which the stress-energy tensor is sufficiently nontrivial in a technical sense that we make precise.Comment: 41 pages, 2 figures. v2: Arguments clarified, some side comments corrected, connection to previous work by Jack and Osborn described, conclusions unaffecte

    The H.E.S.S. extragalactic sky

    Full text link
    The H.E.S.S. Cherenkov telescope array, located on the southern hemisphere in Namibia, studies very high energy (VHE; E>100 GeV) gamma-ray emission from astrophysical objects. During its successful operations since 2002 more than 80 galactic and extra-galactic gamma-ray sources have been discovered. H.E.S.S. devotes over 400 hours of observation time per year to the observation of extra-galactic sources resulting in the discovery of several new sources, mostly AGNs, and in exciting physics results e.g. the discovery of very rapid variability during extreme flux outbursts of PKS 2155-304, stringent limits on the density of the extragalactic background light (EBL) in the near-infrared derived from the energy spectra of distant sources, or the discovery of short-term variability in the VHE emission from the radio galaxy M 87. With the recent launch of the Fermi satellite in 2008 new insights into the physics of AGNs at GeV energies emerged, leading to the discovery of several new extragalactic VHE sources. Multi-wavelength observations prove to be a powerful tool to investigate the production mechanism for VHE emission in AGNs. Here, new results from H.E.S.S. observations of extragalactic sources will be presented and their implications for the physics of these sources will be discussed.Comment: 8 pages, 6 figures, invited review talk, in the proceedings of the "International Workshop on Beamed and Unbeamed Gamma-Rays from Galaxies" 11-15 April 2011, Lapland Hotel Olos, Muonio, Finland, Journal of Physics: Conference Series Volume 355, 201
    corecore