26 research outputs found

    Structure characterization and biodegradation rate of poly(ε-caprolactone)/starch blends

    Get PDF
    The present paper focuses on the effects of blending poly (ε-caprolactone) (PCL) with thermoplastic starch (TPS) on the final biodegradation rate of PCL/TPS blends, emphasizing the type of environment in which biodegradation takes place. The blends were prepared by melt-mixing the components before a two-step processing procedure, which strongly affects the degree of plasticization and therefore the final material morphology, as was detailed in the previous work, was used for the thermoplastic starch. The concentration row of pure PCL over PCL/TPS blends to pure TPS was analyzed for biodegradation in two different environments (compost and soil), as well as from a morphological, thermomechanical, rheological, and mechanical point of view. The morphology of all the samples was studied before and after biodegradation. The biodegradation rate of the materials was expressed as the percentage of carbon mineralization, and significant changes, especially after exposure in soil, were recorded. The crystallinity of the measured samples indicated that the addition of thermoplastic starch has a negligible effect on PCL-crystallization. The blend with 70% of TPS and a co-continuous morphology demonstrated very fast biodegradation, with the initial rate almost identical to pure TPS in both environments while the 30% TPS blend exhibited particle morphology of the starch phase in the PCL matrix, which probably resulted in a dominant effect of the matrix on the biodegradation course. Moreover, some molecular interaction between PCL and TPS, as well as differences in flow and mechanical behavior of the blends, was determined. © Copyright © 2020 Nevoralová, Koutný, Ujčić, Starý, Šerá, Vlková, Šlouf, Fortelný and Kruliš.MH CR [NV15-31269A]; Technology Agency of the CR [TE01020118, TN01000008]; Ministry of Education, Youth and Sports of the CR, program NPU I [POLYMAT LO1507

    Description of the Droplet Size Evolution in Flowing Immiscible Polymer Blends

    No full text
    Control of the phase structure evolution in flowing immiscible polymer blends during their mixing and processing is fundamental for tailoring of their performance. This review summarizes present state of understanding and predictability of the phase structure evolution in flowing immiscible polymer blends with dispersed structure. Results of the studies of the droplet breakup in flow, important for determination of the droplet breakup frequency and of the size distribution of the daughter droplets, are reviewed. Theories of the flow-induced coalescence providing equations for collision efficiency are discussed. Approximate analytic expressions reliably describing dependence of the collision efficiency on system parameters are presented. Available theories describing the competition between the droplet breakup and coalescence in flow are summarized and approximations used in their derivation are discussed. Problems with applicability of available theories on prediction of the droplet size evolution during mixing and processing of immiscible polymer blends, which have not been broadly discussed so far, are addressed

    An analysis of the origin of coalescence suppression in compatibilized polymer blends

    No full text
    The course of the flow-induced coalescence and the effects of the Marangoni force and steric repulsion on the coalescence suppression in polymer blends containing a compatibilizer were analysed. The expression for coalescence probability of deformable droplets, reliably describing its dependence on the droplet size, was proposed. It was shown that a strong negative correlation exists between the Marangoni force and steric repulsion contributions and the decisive mechanism of the coalescence suppression cannot be determined from the dependence of coalescence on the shear rate. For prediction of the magnitude of the Marangoni force, the knowledge of the rate of copolymer diffusion alone the interface is necessary. The influence of simultaneous collisions of three and more droplets and of droplet deformation in flow, which are not included in available theories, is discussed. (C) 2004 Elsevier Ltd. All rights reserved

    Vývoj fázové struktury při toku polymerních směsí

    No full text
    State of art in description of the phase structure development in flowing polymer blends is discussed. It is shown that the rule satisfactorily predicting a type of the phase structure does not exist. Graphic solution of the equation describing dynamic equilibrium between the droplet breakup and coalescence provides satisfactorily prediction of the dependence of average droplet size on system parameters

    The Effects of Copolymer Compatibilizers on the Phase Structure Evolution in Polymer Blends—A Review

    No full text
    This paper summarizes the results of studies describing the effect of block and graft copolymers on the phase structure formation and evolution in immiscible polymer blends. The main phenomenological rules for prediction of the copolymer compatibilization efficiency are briefly described and compared with selected experimental data. The results of the theories of equilibrium distribution of a copolymer between the blend interface and the bulk phases and its effect on the blend interfacial tension are summarized. The theories of the compatibilizer effect on the droplet breakup in flow are analyzed. The mechanisms of the copolymer effect on the coalescence of droplets in flow are compared and their effect on the droplet size is shown. The problems of reliable description of the effect of a copolymer on the coalescence in quiescent state are presented. Obstacles to derivation of a realistic theory of the copolymer effect on the competition between the droplet breakup and coalescence are discussed. Selected experimental data are compared with the theoretical results

    Description of the Droplet Size Evolution in Flowing Immiscible Polymer Blends

    No full text
    Control of the phase structure evolution in flowing immiscible polymer blends during their mixing and processing is fundamental for tailoring of their performance. This review summarizes present state of understanding and predictability of the phase structure evolution in flowing immiscible polymer blends with dispersed structure. Results of the studies of the droplet breakup in flow, important for determination of the droplet breakup frequency and of the size distribution of the daughter droplets, are reviewed. Theories of the flow-induced coalescence providing equations for collision efficiency are discussed. Approximate analytic expressions reliably describing dependence of the collision efficiency on system parameters are presented. Available theories describing the competition between the droplet breakup and coalescence in flow are summarized and approximations used in their derivation are discussed. Problems with applicability of available theories on prediction of the droplet size evolution during mixing and processing of immiscible polymer blends, which have not been broadly discussed so far, are addressed

    Interfacial activity of styrene-butadiene block copolymers in low-density polyethylene/polystyrene blends

    No full text
    The. effect of molecular structure of styrene-butadiene (SB) block copolymers on their interfacial activity in low-density polyethylene/polystyrene (LDPE/PS) (4/1) blends was studied. It was found that addition of some SB copolymers, which are localized in brittle PS particles, leads to a decrease in the blend impact strength in spite of the fact that these SB improve the toughness of both the blend components. Comparison with our previous results showed that the distribution of SB copolymers between the interface and bulk phases and their supermolecular structure in LDPE/PS (4/1) blends strongly differs from those in LDPE/PS (1/4) blends
    corecore