30 research outputs found

    Rifampicin-liposomes for mycobacterium abscessus infection treatment: intracellular uptake and antibacterial activity evaluation

    Get PDF
    : Treatment of pulmonary infections caused by Mycobacterium abscessus are extremely difficult to treat, as this species is naturally resistant to many common antibiotics. Liposomes are vesicular nanocarriers suitable for hydrophilic and lipophilic drug loading, able to deliver drugs to the target site, and successfully used in different pharmaceutical applications. Moreover, liposomes are biocompatible, biodegradable and nontoxic vesicles and nebulized liposomes are efficient in targeting antibacterial agents to macrophages. The present aim was to formulate rifampicin-loaded liposomes (RIF-Lipo) for lung delivery, in order to increase the local concentration of the antibiotic. Unilamellar liposomal vesicles composed of anionic DPPG mixed with HSPC for rifampicin delivery were designed, prepared, and characterized. Samples were prepared by using the thin-film hydration method. RIF-Lipo and unloaded liposomes were characterized in terms of size, ζ-potential, bilayer features, stability and in different biological media. Rifampicin's entrapment efficiency and release were also evaluated. Finally, biological activity of RIF-loaded liposomes in Mycobacterium abscessus-infected macrophages was investigated. The results show that RIF-lipo induce a significantly better reduction of intracellular Mycobacterium abscessus viability than the treatment with free drug. Liposome formulation of rifampicin may represent a valuable strategy to enhance the biological activity of the drug against intracellular mycobacteria

    Regeneration of Exhausted Palladium-Based Membranes: Recycling Process and Economics

    Get PDF
    The aim of the present work is the recycling treatment of tubular α-Al2O3-supported ceramic membranes with a Pd/Ag selective layer, employed in hydrogen production with integrated CO2 capture. A nitric acid leaching treatment was investigated, and recovered ceramic supports were characterized, demonstrating their suitability for the production of novel efficient membranes. The main objective was the metal dissolution that preserved the support integrity in order to allow the recovered membrane to be suitable for a new deposition of the selective layer. The conditions that obtained a satisfactory dissolution rate of the Pd/Ag layer while avoiding the support to be damaged are as follows: nitric acid 3 M, 60 °C and 3.5 h of reaction time. The efficiency of the recovered supports was determined by nitrogen permeance and surface roughness analysis, and the economic figures were analysed to evaluate the convenience of the regeneration process and the advantage of a recycled membrane over a new membrane. The experimentation carried out demonstrates the proposed process feasibility both in terms of recycling and economic results.This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 760944 (MEMBER project)

    Effect of ciprofloxacin-loaded niosomes on escherichia coli and staphylococcus aureus biofilm formation

    Get PDF
    Infections caused by bacterial biofilms represent a global health problem, causing considerable patient morbidity and mortality in addition to an economic burden. Escherichia coli, Staphylococcus aureus, and other medically relevant bacterial strains colonize clinical surfaces and medical devices via biofilm in which bacterial cells are protected from the action of the immune system, disinfectants, and antibiotics. Several approaches have been investigated to inhibit and disperse bacterial biofilms, and the use of drug delivery could represent a fascinating strategy. Ciprofloxacin (CIP), which belongs to the class of fluoroquinolones, has been extensively used against various bacterial infections, and its loading in nanocarriers, such as niosomes, could support the CIP antibiofilm activity. Niosomes, composed of two surfactants (Tween 85 and Span 80) without the presence of cholesterol, are prepared and characterized considering the following features: hydrodynamic diameter, ζ-potential, morphology, vesicle bilayer characteristics, physical-chemical stability, and biological efficacy. The obtained results suggest that: (i) niosomes by surfactants in the absence of cholesterol are formed, can entrap CIP, and are stable over time and in artificial biological media; (ii) the CIP inclusion in nanocarriers increase its stability, with respect to free drug; (iii) niosomes preparations were able to induce a relevant inhibition of biofilm formation

    I.S.Mu.L.T. Achilles Tendon Ruptures Guidelines

    Get PDF
    This work provides easily accessible guidelines for the diagnosis, treatment and rehabilitation of Achilles tendon ruptures. These guidelines could be considered as recommendations for good clinical practice developed through a process of systematic review of the literature and expert opinion, to improve the quality of care for the individual patient and rationalize the use of resources. This work is divided into two sessions: 1) questions about hot topics; 2) answers to the questions following Evidence Based Medicine principles. Despite the frequency of the pathology andthe high level of satisfaction achieved in treatment of Achilles tendon ruptures, a global consensus is lacking. In fact, there is not a uniform treatment and rehabilitation protocol used for Achilles tendon ruptures

    A Systematic Review of Battery Recycling Technologies: Advances, Challenges, and Future Prospects

    No full text
    As the demand for batteries continues to surge in various industries, effective recycling of used batteries has become crucial to mitigate environmental hazards and promote a sustainable future. This review article provides an overview of current technologies available for battery recycling, highlighting their strengths and limitations. Additionally, it explores the current challenges faced by the industry and discusses potential future advancements. Through an in-depth analysis of the state-of-the-art recycling methods, this review aims to shed light on the progress made in battery recycling and the path ahead for sustainable and efficient battery waste management

    CARATTERIZZAZIONE DEL SITO TEST DI TURRIACO MEDIANTE METODOLOGIE GEOFISICHE INTEGRATE.

    No full text
    8nonemixedGervasio, I.; Brancatelli, Giuseppe; Della Vedova, B.; Boaga, J.; Vignoli, G.; Cassiani, G.; Forte, E.; Dazzan, E.Gervasio, Isabella; Brancatelli, Giuseppe; DELLA VEDOVA, Bruno; Boaga, J.; Vignoli, G.; Cassiani, Giorgio; Forte, Emanuele; Dazzan, Enric

    Resveratrol-Loaded Nanoemulsions: In Vitro Activity on Human T24 Bladder Cancer Cells

    No full text
    The chemopreventive potential of Resveratrol (RV) against bladder cancer and its mechanism of action have been widely demonstrated. The physicochemical properties of RV, particularly its high reactivity and low solubility in aqueous phase, have been limiting factors for its bioavailability and in vivo efficacy. In order to overcome these limitations, its inclusion in drug delivery systems needs to be taken into account. In particular, oil-in-water (O/W) nanoemulsions (NEs) have been considered ideal candidates for RV encapsulation. Since surfactant and oil composition can strongly influence NE features and their application field, a ternary phase diagram was constructed and evaluated to select a suitable surfactant/oil/water ratio. The selected sample was deeply characterized in terms of physical chemical features, stability, release capability and cytotoxic activity. Results showed a significant decrease in cell viability after the incubation of bladder T24 cancer cells with RV-loaded NEs, compared to free RV. The selected NE formulation was able to preserve and improve RV cytotoxic activity by a more rapid drug uptake into the cells. O/W NEs represent an effective approach to improve RV bioavailability

    Nano-Based Drug Delivery Systems of Potent MmpL3 Inhibitors for Tuberculosis Treatment

    No full text
    Tuberculosis remains one of the world’s deadliest infectious diseases, accounting for nearly 1.3 million deaths every year. Tuberculosis treatment is challenging because of the toxicity, decreased bioavailability at the target site of the conventional drugs and, most importantly, low adherence of patients; this leads to drug resistance. Here, we describe the development of suitable nanocarriers with specific physicochemical properties to efficiently deliver two potent antimyco- bacterial compounds. We prepared nanoemulsions and niosomes formulations and loaded them with two different MmpL3 inhibitors previously identified (NEs + BM635 and NIs + BM859). NEs + BM635 and NIs + BM859 were deeply characterized for their physicochemical properties and anti- mycobacterial activity. NEs + BM635 and NIs + BM859 showed good hydrodynamic diameter, ζ- Potential, PDI, drug-entrapment efficiency, polarity, and microviscosity and stability. Even though both formulations proved to perform well, only NIs + BM859 showed potent antimycobacterial ac- tivity against M. tuberculosis (MIC = 0.6 μM) compared to that of the free compound. This is most probably caused by the fact that BM635, being highly hydrophobic, encounters maximum hin- drance in diffusion, whereas BM859, characterized by high solubility in aqueous medium (152 μM), diffuses more easily. The niosomal formulation described in this work may be a useful therapeutic tool for tuberculosis treatment, and further studies will follow to characterize the in vivo behavior of the formulation

    Texture Analysis in the Evaluation of COVID-19 Pneumonia in Chest X-Ray Images: A Proof of Concept Study

    No full text
    Background: One of the most challenging aspects related to Covid-19 is to establish the presence of infection in an early phase of the disease. Texture analysis might be an additional tool for the evaluation of Chest X-ray in patients with clinical suspicion of Covid-19 related pneumonia. Objective: To evaluate the diagnostic performance of texture analysis and machine learning models for the diagnosis of Covid-19 interstitial pneumonia in Chest X-ray images. Methods: Chest X-ray images were accessed from a publicly available repository(https://www.kaggle. com/tawsifurrahman/covid19-radiography-database). Lung areas were manually segmented using a polygonal region of interest covering both lung areas, using MaZda, a freely available software for texture analysis. A total of 308 features per ROI was extracted. One hundred-ten Covid-19 Chest X-ray images were selected for the final analysis. Results: Six models, namely NB, GLM, DL, GBT, ANN, and PLS-DA were selected and ensembled. According to Youden’s index, the Covid-19 Ensemble Machine Learning Score showing the highest area under the curve (0.971±0.015) was 132.57. Assuming this cut-off the Ensemble model performance was estimated by evaluating both true and false positive/negative, resulting in 91.8% accuracy with 93% sensitivity and 90% specificity. Moving the cut-off value to -100, although the accuracy resulted lower (90.6%), the Ensemble Machine Learning showed 100% sensitivity, with 80% specificity. Conclusion: Texture analysis of Chest X-ray images and machine learning algorithms may help in differentiating patients with Covid-19 pneumonia. Despite several limitations, this study can lay the ground for future research works in this field and help to develop more rapid and accurate screening tools for these patients
    corecore