422 research outputs found

    Relation of modifiable neighborhood attributes to walking

    Get PDF
    Abstract Background There is a paucity of research examining associations between walking and environmental attributes that are more modifiable in the short term, such as car parking availability, access to transit, neighborhood traffic, walkways and trails, and sidewalks. Methods Adults were recruited between April 2004 and September 2006 in the Minneapolis-St Paul metropolitan area and in Montgomery County, Maryland using similar research designs in the two locations. Self-reported and objective environmental measures were calculated for participants\u27 neighborhoods. Self-reported physical activity was collected through the long form of the International Physical Activity Questionnaire (IPAQ-LF). Generalized estimating equations were used to examine adjusted associations between environmental measures and transport and overall walking. Results Participants (n = 887) averaged 47 years of age (SD = 13.65) and reported 67 min/week (SD = 121.21) of transport walking and 159 min/week (SD = 187.85) of non-occupational walking. Perceived car parking difficulty was positively related to higher levels of transport walking (OR 1.41, 95%CI: 1.18, 1.69) and overall walking (OR 1.18, 95%CI: 1.02, 1.37). Self-reported ease of walking to a transit stop was negatively associated with transport walking (OR 0.86, 95%CI: 0.76, 0.97), but this relationship was moderated by perceived access to destinations. Walking to transit also was related to non-occupational walking (OR 0.85, 95%CI: 0.73, 0.99). Conclusions Parking difficulty and perceived ease of access to transit are modifiable neighborhood characteristics associated with self-reported walking

    The effects of neighborhood density and street connectivity on walking behavior: the Twin Cities walking study

    Get PDF
    A growing body of health and policy research suggests residential neighborhood density and street connectivity affect walking and total physical activity, both of which are important risk factors for obesity and related chronic diseases. The authors report results from their methodologically novel Twin Cities Walking Study; a multilevel study which examined the relationship between built environments, walking behavior and total physical activity. In order to maximize neighborhood-level variation while maintaining the exchangeability of resident-subjects, investigators sampled 716 adult persons nested in 36 randomly selected neighborhoods across four strata defined on density and street-connectivity – a matched sampling design. Outcome measures include two types of self-reported walking (from surveys and diaries) and so-called objective 7-day accelerometry measures. While crude differences are evident across all outcomes, adjusted effects show increased odds of travel walking in higher-density areas and increased odds of leisure walking in low-connectivity areas, but neither density nor street connectivity are meaningfully related to overall mean miles walked per day or increased total physical activity. Contrary to prior research, the authors conclude that the effects of density and block size on total walking and physical activity are modest to non-existent, if not contrapositive to hypotheses. Divergent findings are attributed to this study's sampling design, which tends to mitigate residual confounding by socioeconomic status

    Potential Conservation Laws

    Full text link
    We prove that potential conservation laws have characteristics depending only on local variables if and only if they are induced by local conservation laws. Therefore, characteristics of pure potential conservation laws have to essentially depend on potential variables. This statement provides a significant generalization of results of the recent paper by Bluman, Cheviakov and Ivanova [J. Math. Phys., 2006, V.47, 113505]. Moreover, we present extensions to gauged potential systems, Abelian and general coverings and general foliated systems of differential equations. An example illustrating possible applications of proved statements is considered. A special version of the Hadamard lemma for fiber bundles and the notions of weighted jet spaces are proposed as new tools for the investigation of potential conservation laws.Comment: 36 pages, extended versio

    Origins and population genetics of sambar deer (Cervus unicolor) introduced to Australia and New Zealand

    Get PDF
    Context. Some populations of introduced species cause significant undesirable impacts but can also act as reservoirs for genetic diversity. Sambar deer (Cervus unicolor) are ‘Vulnerable’ in their native range and invasive in Australia and New Zealand. Genetic data can be used to determine whether these introduced populations might serve as genetic reservoirs for declining native populations and to identify spatial units for management. Aims. We aimed to identify the provenance of sambar deer in Australia and New Zealand, and to characterise their genetic diversity and population structure. Methods. We used mitochondrial control region sequences and 18 nuclear microsatellite loci of 24 New Zealand and 63 Australian sambar deer collected across continuous habitat in each location. We estimated genetic diversity and population differentiation by using pairwise FST, AMOVA, and STRUCTURE analyses. We compared our data with 27 previously published native and invasive range sequences to identify phylogenetic relationships. Key results. Sambar deer in Australia and New Zealand are genetically more similar to those in the west of the native range (South and Central Highlands of India, and Sri Lanka), than to those in the east (eastern India, and throughout Southeast Asia). Nuclear genetic diversity was lower than in the native range; only one mitochondrial haplotype was found in each introduced population. Australian and New Zealand sambar deer were genetically distinct but there was no population structure within either population. Conclusions. The genetic differences we identified between these two introduced populations at putatively neutral loci indicate that there also may be underlying diversity at functional loci. The lack of population genetic structure that we found within introduced populations suggests that individuals within these popula- tions do not experience barriers to dispersal across the areas sampled. Implications. Although genetic diversity is reduced in the introduced range compared with the native range, sambar deer in Australia and New Zealand harbour unique genetic variants that could be used to strengthen genetic diversity in populations under threat in the native range. The apparent high levels of gene flow across the areas we sampled suggest that localised control is unlikely to be effective in Australia and New Zealand

    A Survey of the Pectic Content of Nonlignified Monocot Cell Walls

    Full text link

    The tRNA Synthetase Paralog PoxA Modifies Elongation Factor-P with (R)-β-lysine

    Get PDF
    The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with α-lysine at low efficiency. Cell-free extracts containing non–α-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of β-lysine, a substrate also predicted by genomic analyses. EF-P was efficiently functionally modified with (R)-β-lysine but not (S)-β-lysine or genetically encoded α-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases

    Evaluation of the Reliability of Electronic Medical Record Data in Identifying Comorbid Conditions among Patients with Advanced Non-Small Cell Lung Cancer

    Get PDF
    Background. Traditional methods for identifying comorbidity data in EMRs have relied primarily on costly and time-consuming manual chart review. The purpose of this study was to validate a strategy of electronically searching EMR data to identify comorbidities among cancer patients. Methods. Advanced stage NSCLC patients (N = 2,513) who received chemotherapy from 7/1/2006 to 6/30/2008 were identified using iKnowMed, US Oncology's proprietary oncology-specific EMR system. EMR data were searched for documentation of comorbidities common to advanced stage cancer patients. The search was conducted by a series of programmatic queries on standardized information including concomitant illnesses, patient history, review of systems, and diagnoses other than cancer. The validity of the comorbidity information that we derived from the EMR search was compared to the chart review gold standard in a random sample of 450 patients for whom the EMR search yielded no indication of comorbidities. Negative predictive values were calculated. Results. The overall prevalence of comorbidities of 22%. Overall negative predictive value was 0.92 in the 450 patients randomly sampled patients (36 of 450 were found to have evidence of comorbidities on chart review). Conclusion. Results of this study suggest that efficient queries/text searches of EMR data may provide reliable data on comorbid conditions among cancer patients

    Estimating deer density and abundance using spatial mark–resight models with camera trap data

    Get PDF
    Globally, many wild deer populations are actively studied or managed for conservation, hunting, or damage mitigation purposes. These studies require reliable estimates of population state parameters, such as density or abundance, with a level of precision that is fit for purpose. Such estimates can be difficult to attain for many populations that occur in situations that are poorly suited to common survey methods. We evaluated the utility of combining camera trap survey data, in which a small proportion of the sample is individually recognizable using natural markings, with spatial mark–resight (SMR) models to estimate deer density in a variety of situations. We surveyed 13 deer populations comprising four deer species (Cervus unicolor, C. timorensis, C. elaphus, Dama dama) at nine widely separated sites, and used Bayesian SMR models to estimate population densities and abundances. Twelve surveys provided sufficient data for analysis and seven produced density estimates with coefficients of variation (CVs) ≤ 0.25. Estimated densities ranged from 0.3 to 24.6 deer km−2. Camera trap surveys and SMR models provided a powerful and flexible approach for estimating deer densities in populations in which many detections were not individually identifiable, and they should provide useful density estimates under a wide range of conditions that are not amenable to more widely used methods. In the absence of specific local information on deer detectability and movement patterns, we recommend that at least 30 cameras be spaced at 500–1,000 m and set for 90 days. This approach could also be applied to large mammals other than deer

    Estimating deer density and abundance using spatial mark–resight models with camera trap data

    Get PDF
    Globally, many wild deer populations are actively studied or managed for conservation, hunting, or damage mitigation purposes. These studies require reliable estimates of population state parameters, such as density or abundance, with a level of precision that is fit for purpose. Such estimates can be difficult to attain for many populations that occur in situations that are poorly suited to common survey methods. We evaluated the utility of combining camera trap survey data, in which a small proportion of the sample is individually recognizable using natural markings, with spatial mark–resight (SMR) models to estimate deer density in a variety of situations. We surveyed 13 deer populations comprising four deer species (Cervus unicolor, C. timorensis, C. elaphus, Dama dama) at nine widely separated sites, and used Bayesian SMR models to estimate population densities and abundances. Twelve surveys provided sufficient data for analysis and seven produced density estimates with coefficients of variation (CVs) ≤ 0.25. Estimated densities ranged from 0.3 to 24.6 deer km−2. Camera trap surveys and SMR models provided a powerful and flexible approach for estimating deer densities in populations in which many detections were not individually identifiable, and they should provide useful density estimates under a wide range of conditions that are not amenable to more widely used methods. In the absence of specific local information on deer detectability and movement patterns, we recommend that at least 30 cameras be spaced at 500–1,000 m and set for 90 days. This approach could also be applied to large mammals other than deer
    corecore