4,226 research outputs found

    On the contrasting spin dynamics of La2xSrxCuO4La_{2-x}Sr_xCuO_4, Nd2xCexCuO4Nd_{2-x}Ce_xCuO_4 and YBa2Cu3O6+xYBa_2Cu_3O_{6+x} near half filling

    Full text link
    We present simple calculations which show that incommensurability upon doping and the width of the magnetically ordered phase in Mott-Hubbard insulators depend strongly on the location of the hole/electron pockets in the Brillouin zone. For LaSrCuOLaSrCuO systems, we found the pockets at (±π/2,±π/2)(\pm \pi/2,\pm \pi/2), in which case the corrections to the antiferromagnetic spin stiffness grow with doping and destroy the commensurate antiferromagnetic ordering already at a very small doping. On the other hand, in NdCeCuONdCeCuO, the hole pockets are located at (π,0)(\pi,0) and the symmetry related points, in which case the corrections to the stiffness scale linearly with the density of carriers and do not destroy commensurate spin ordering. For YBCuOYBCuO, systems the situation is less certain, but our results favor hole pockets at (π/2,π/2)(\pi/2,\pi/2). We also discuss briefly the tendency towards phase separation.Comment: 18 pages, LaTe

    Fractional Operators, Dirichlet Averages, and Splines

    Full text link
    Fractional differential and integral operators, Dirichlet averages, and splines of complex order are three seemingly distinct mathematical subject areas addressing different questions and employing different methodologies. It is the purpose of this paper to show that there are deep and interesting relationships between these three areas. First a brief introduction to fractional differential and integral operators defined on Lizorkin spaces is presented and some of their main properties exhibited. This particular approach has the advantage that several definitions of fractional derivatives and integrals coincide. We then introduce Dirichlet averages and extend their definition to an infinite-dimensional setting that is needed to exhibit the relationships to splines of complex order. Finally, we focus on splines of complex order and, in particular, on cardinal B-splines of complex order. The fundamental connections to fractional derivatives and integrals as well as Dirichlet averages are presented

    Minimal Work Principle and its Limits for Classical Systems

    Full text link
    The minimal work principle asserts that work done on a thermally isolated equilibrium system, is minimal for the slowest (adiabatic) realization of a given process. This principle, one of the formulations of the second law, is operationally well-defined for any finite (few particle) Hamiltonian system. Within classical Hamiltonian mechanics, we show that the principle is valid for a system of which the observable of work is an ergodic function. For non-ergodic systems the principle may or may not hold, depending on additional conditions. Examples displaying the limits of the principle are presented and their direct experimental realizations are discussed.Comment: 4 + epsilon pages, 1 figure, revte

    The Formaldehyde Masers in NGC 7538 and G29.96-0.02: VLBA, MERLIN, and VLA Observations

    Full text link
    The 6 cm formaldehyde (H2CO) maser sources in the compact HII regions NGC 7538-IRS1 and G29.96-0.02 have been imaged at high resolution (beams < 50 mas). Using the VLBA and MERLIN, we find the angular sizes of the NGC 7538 masers to be ~10 mas (30 AU) corresponding to brightness temperatures ~10^8 K. The angular sizes of the G29.96-0.02 masers are ~20 mas (130 AU) corresponding to brightness temperatures ~10^7 K. Using the VLA, we detect 2 cm formaldehyde absorption from the maser regions. We detect no emission in the 2 cm line, indicating the lack of a 2 cm maser and placing limits on the 6 cm excitation process. We find that both NGC 7538 maser components show an increase in intensity on 5-10 year timescales while the G29.96-0.02 masers show no variability over 2 years. A search for polarization provides 3-sigma upper limits of 1% circularly polarized and 10% linearly polarized emission in NGC 7538 and of 15% circularly polarized emission in G29.96-0.02. A pronounced velocity gradient of 28 km/s/arcsecond (1900 km/s/pc) is detected in the NGC 7538 maser gas.Comment: accepted to ApJ, 15 figures, 11 table

    A Search for H2CO 6cm Emission toward Young Stellar Objects III: VLA Observations

    Full text link
    We report the results of our third survey for formaldehyde (H2CO) 6cm maser emission in the Galaxy. Using the Very Large Array, we detected two new H2CO maser sources (G23.01-0.41 and G25.83-0.18), thus increasing the sample of known H2CO maser regions in the Galaxy to seven. We review the characteristics of the G23.01-0.41 and G25.83-0.18 star forming regions. The H2CO masers in G23.01-0.41 and G25.83-0.18 share several properties with the other known H2CO masers, in particular, emission from rich maser environments and close proximity to very young massive stellar objects.Comment: Accepted for publication in the Astrophysical Journal Supplement Serie

    Case Notes

    Get PDF
    For decades, optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients have been identified(1-5). These have peak luminosities comparable to type Ia supernovae, but rise to maximum in less than ten days and fade from view in less than one month. Here we present the most extreme example of this class of object thus far: KSN 2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. We show that, unlike type Ia supernovae, the light curve of KSN 2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN 2015K is well fitted by a model where the supernova runs into external material presumably expelled in a pre-supernova mass-loss episode. The rapid rise of KSN 2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.NASA NNH15ZDA001N NNX17AI64G Australian Research Council Centre of Excellence for All-sky Astrophysics CE11000102

    Kolmogorov turbulence in a random-force-driven Burgers equation

    Full text link
    The dynamics of velocity fluctuations, governed by the one-dimensional Burgers equation, driven by a white-in-time random force with the spatial spectrum \overline{|f(k)|^2}\proptok^{-1}, is considered. High-resolution numerical experiments conducted in this work give the energy spectrum E(k)kβE(k)\propto k^{-\beta} with β=5/3±0.02\beta =5/3\pm 0.02. The observed two-point correlation function C(k,ω)C(k,\omega) reveals ωkz\omega\propto k^z with the "dynamical exponent" z2/3z\approx 2/3. High-order moments of velocity differences show strong intermittency and are dominated by powerful large-scale shocks. The results are compared with predictions of the one-loop renormalized perturbation expansion.Comment: 13 LaTeX pages, psfig.sty macros, Phys. Rev. E 51, R2739 (1995)

    Spin Diffusion in Double-Exchange Manganites

    Full text link
    The theoretical study of spin diffusion in double-exchange magnets by means of dynamical mean-field theory is presented. We demonstrate that the spin-diffusion coefficient becomes independent of the Hund's coupling JH in the range of parameters JH*S >> W >> T, W being the bandwidth, relevant to colossal magnetoresistive manganites in the metallic part of their phase diagram. Our study reveals a close correspondence as well as some counterintuitive differences between the results on Bethe and hypercubic lattices. Our results are in accord with neutron scattering data and with previous theoretical work for high temperatures.Comment: 4.0 pages, 3 figures, RevTeX 4, replaced with the published versio

    Dispersion Coefficients by a Field-Theoretic Renormalization of Fluid Mechanics

    Full text link
    We consider subtle correlations in the scattering of fluid by randomly placed obstacles, which have been suggested to lead to a diverging dispersion coefficient at long times for high Peclet numbers, in contrast to finite mean-field predictions. We develop a new master equation description of the fluid mechanics that incorporates the physically relevant fluctuations, and we treat those fluctuations by a renormalization group procedure. We find a finite dispersion coefficient at low volume fraction of disorder and high Peclet numbers.Comment: 4 pages, 1 figure; to appear in Phys. Rev. Let
    corecore