216 research outputs found

    Banner News

    Get PDF
    https://openspace.dmacc.edu/banner_news/1338/thumbnail.jp

    Banner News

    Get PDF
    https://openspace.dmacc.edu/banner_news/1334/thumbnail.jp

    Non-destructive optical measurement of relative phase between two Bose condensates

    Full text link
    We study the interaction of light with two Bose condensates as an open quantum system. The two overlapping condensates occupy two different Zeeman sublevels and two driving light beams induce a coherent quantum tunneling between the condensates. We derive the master equation for the system. It is shown that stochastic simulations of the measurements of spontaneously scattered photons establish the relative phase between two Bose condensates, even though the condensates are initially in pure number states. These measurements are non-destructive for the condensates, because only light is scattered, but no atoms are removed from the system. Due to the macroscopic quantum interference the detection rate of photons depends substantially on the relative phase between the condensates. This may provide a way to distinguish, whether the condensates are initially in number states or in coherent states.Comment: 26 pages, RevTex, 8 postscript figures, 1 MacBinary eps-figur

    PTF10fqs: A Luminous Red Nova in the Spiral Galaxy Messier 99

    Get PDF
    The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local Universe (distance less than 200 Mpc). Here, we report the discovery of PTF10fqs, a transient in the luminosity "gap" between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of Mr = -12.3, red color (g-r = 1.0) and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width H (930 km/s) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to thatof M85OT2006-1, SN2008S, and NGC300OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF10fqs shows some evidence of a broad feature (around 8600A) that may suggest very large velocities (10,000 km/s) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring and statistics (e.g. disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.Comment: 12 pages, 12 figures, Replaced with published versio
    corecore