1,363 research outputs found
Detection experiments with humans implicate visual predation as a driver of colour polymorphism dynamics in pygmy grasshoppers
Background: Animal colour patterns offer good model systems for studies of biodiversity and evolution of local adaptations. An increasingly popular approach to study the role of selection for camouflage for evolutionary trajectories of animal colour patterns is to present images of prey on paper or computer screens to human 'predators'. Yet, few attempts have been made to confirm that rates of detection by humans can predict patterns of selection and evolutionary modifications of prey colour patterns in nature. In this study, we first analyzed encounters between human 'predators' and images of natural black, grey and striped colour morphs of the polymorphic Tetrix subulata pygmy grasshoppers presented on background images of unburnt, intermediate or completely burnt natural habitats. Next, we compared detection rates with estimates of capture probabilities and survival of free-ranging grasshoppers, and with estimates of relative morph frequencies in natural populations.Results: The proportion of grasshoppers that were detected and time to detection depended on both the colour pattern of the prey and on the type of visual background. Grasshoppers were detected more often and faster on unburnt backgrounds than on 50% and 100% burnt backgrounds. Striped prey were detected less often than grey or black prey on unburnt backgrounds; grey prey were detected more often than black or striped prey on 50% burnt backgrounds; and black prey were detected less often than grey prey on 100% burnt backgrounds. Rates of detection mirrored previously reported rates of capture by humans of free-ranging grasshoppers, as well as morph specific survival in the wild. Rates of detection were also correlated with frequencies of striped, black and grey morphs in samples of T. subulata from natural populations that occupied the three habitat types used for the detection experiment.Conclusions: Our findings demonstrate that crypsis is background-dependent, and implicate visual predation as an important driver of evolutionary modifications of colour polymorphism in pygmy grasshoppers. Our study provides the clearest evidence to date that using humans as 'predators' in detection experiments may provide reliable information on the protective values of prey colour patterns and of natural selection and microevolution of camouflage in the wild
Diversity and Relatedness Enhance Survival in Colour Polymorphic Grasshoppers
Evolutionary theory predicts that different resource utilization and behaviour by alternative phenotypes may reduce competition and enhance productivity and individual performance in polymorphic, as compared with monomorphic, groups of individuals. However, firm evidence that members of more heterogeneous groups benefit from enhanced survival has been scarce or lacking. Furthermore, benefits associated with phenotypic diversity may be counterbalanced by costs mediated by reduced relatedness, since closely related individuals typically are more similar. Pygmy grasshoppers (Tetrix subulata) are characterized by extensive polymorphism in colour pattern, morphology, behaviour and physiology. We studied experimental groups founded by different numbers of mothers and found that survival was higher in low than in high density, that survival peaked at intermediate colour morph diversity in high density, and that survival was independent of diversity in low density where competition was less intense. We further demonstrate that survival was enhanced by relatedness, as expected if antagonistic and competitive interactions are discriminately directed towards non-siblings. We therefore also performed behavioural observations and staged encounters which confirmed that individuals recognized and responded differently to siblings than to non-siblings. We conclude that negative effects associated with competition are less manifest in diverse groups, that there is conflicting selection for and against genetic diversity occurring simultaneously, and that diversity and relatedness may facilitate the productivity and ecological success of groups of interacting individuals
Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times
Biochemical regulatory networks governing diverse cellular processes such as stress-response,
differentiation and cell cycle often contain coupled feedback loops. We aim at understanding
how features of feedback architecture, such as the number of loops, the sign of the loops and
the type of their coupling, affect network dynamical performance. Specifically, we investigate
how bistability range, maximum open-loop gain and switching times of a network with
transcriptional positive feedback are affected by additive or multiplicative coupling with
another positive- or negative-feedback loop. We show that a network's bistability range is
positively correlated with its maximum open-loop gain and that both quantities depend on the
sign of the feedback loops and the type of feedback coupling. Moreover, we find that the
addition of positive feedback could decrease the bistability range if we control the basal level
in the signal-response curves of the two systems. Furthermore, the addition of negative
feedback has the capacity to increase the bistability range if its dissociation constant is much
lower than that of the positive feedback. We also find that the addition of a positive feedback to
a bistable network increases the robustness of its bistability range, whereas the addition of a
negative feedback decreases it. Finally, we show that the switching time for a transition from a
high to a low steady state increases with the effective fold change in gene regulation. In
summary, we show that the effect of coupled feedback loops on the bistability range and
switching times depends on the underlying mechanistic details
Exploring the association between welfare state and mental wellbeing in Europe: does age matter?
Previous research reports show mixed results regarding the age gradient in population mental wellbeing, which may be linked to the role that welfare states play. In this study, we investigate whether an age gradient exists in relation to the association between welfare state and mental wellbeing within the adult population in Europe. We combine individual level data from Round 6 of the European Social Survey and country level data on welfare state and use multilevel regression analyses to explore population mental wellbeing. Subjective and psychological wellbeing dimensions were analyzed, and different approaches to measuring welfare state were explored, including a regime typology and composite welfare state measures constructed on the basis of a set of eight individual indicators. We found the age gradient for mental wellbeing to differ between welfare states, with the positive impact of the welfare state increasing with age. A universal and generous welfare state seems to be particularly important for older adults, who are also more likely to be in higher need of transfers and services provided by the welfare state
Crumpling a Thin Sheet
Crumpled sheets have a surprisingly large resistance to further compression.
We have studied the crumpling of thin sheets of Mylar under different loading
conditions. When placed under a fixed compressive force, the size of a crumpled
material decreases logarithmically in time for periods up to three weeks. We
also find hysteretic behavior when measuring the compression as a function of
applied force. By using a pre-treating protocol, we control this hysteresis and
find reproducible scaling behavior for the size of the crumpled material as a
function of the applied force.Comment: revtex 4 pages, 6 eps figures submitted to Phys Rev. let
System for and method of performing evaluation techniques on a log or round timber
A system for and method of evaluating a log. The system includes an analysis module having at least one input terminal connectable to the at least one input device. The at least one input terminal is operable to receive at least one signal representing at least one measured property of the log and at least one determined parameter of the log determined in response to an energy being applied to the log. The analysis module further includes a processor coupled to the at least one input terminal. The processor determines a predictive modulus of elasticity (MOE) of the log based at least in part on the at least one measured property and the at least one sensed parameter. The analysis module also includes an output terminal coupled to the processor and connectable to an output device. The output terminal transmits a third signal representing the predictive MOE.https://digitalcommons.mtu.edu/patents/1042/thumbnail.jp
Camouflage Effects of Various Colour-Marking Morphs against Different Microhabitat Backgrounds in a Polymorphic Pygmy Grasshopper Tetrix japonica
Colour-marking polymorphism is widely distributed among cryptic species. To account for the adaptive significance of such polymorphisms, several hypotheses have been proposed to date. Although these hypotheses argue over the degree of camouflage effects of marking morphs (and the interactions between morphs and their microhabitat backgrounds), as far as we know, most empirical evidence has been provided under unnatural conditions (i.e., using artificial prey).Tetrix japonica, a pygmy grasshopper, is highly polymorphic in colour-markings and occurs in both sand and grass microhabitats. Even within a microhabitat, T. japonica is highly polymorphic. Using humans as dummy predators and printed photographs in which various morphs of grasshoppers were placed against different backgrounds, we addressed three questions to test the neutral, background heterogeneity, and differential crypsis hypotheses in four marking-type morphs: 1) do the morphs differ in the degree of crypsis in each microhabitat, 2) are different morphs most cryptic in specific backgrounds of the microhabitats, and 3) does the morph frequency reflect the degree of crypsis?The degree of camouflage differed among the four morphs; therefore, the neutral hypothesis was rejected. Furthermore, the order of camouflage advantage among morphs differed depending on the two types of backgrounds (sand and grass), although the grass background consistently provided greater camouflage effects. Thus, based on our results, we could not reject the background heterogeneity hypothesis. Under field conditions, the more cryptic morphs comprised a minority of the population. Overall, our results demonstrate that the different morphs were not equivalent in the degree of crypsis, but the degree of camouflage of the morphs was not consistent with the morph frequency. These findings suggest that trade-offs exist between the camouflage benefit of body colouration and other fitness components, providing a better understanding of the adaptive significance of colour-markings and presumably supporting the differential crypsis hypothesis
- …