127 research outputs found

    Cooperative Carbon Dioxide Adsorption in Alcoholamine- and Alkoxyalkylamine-Functionalized Metal-Organic Frameworks.

    Get PDF
    A series of structurally diverse alcoholamine- and alkoxyalkylamine-functionalized variants of the metal-organic framework Mg2 (dobpdc) are shown to adsorb CO2 selectively via cooperative chain-forming mechanisms. Solid-state NMR spectra and optimized structures obtained from van der Waals-corrected density functional theory calculations indicate that the adsorption profiles can be attributed to the formation of carbamic acid or ammonium carbamate chains that are stabilized by hydrogen bonding interactions within the framework pores. These findings significantly expand the scope of chemical functionalities that can be utilized to design cooperative CO2 adsorbents, providing further means of optimizing these powerful materials for energy-efficient CO2 separations

    High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases.

    Get PDF
    Nanostructuring and nanosizing have been widely employed to increase the rate capability in a variety of energy storage materials. While nanoprocessing is required for many materials, we show here that both the capacity and rate performance of low-temperature bronze-phase TT- and T-polymorphs of Nb2O5 are inherent properties of the bulk crystal structure. Their unique "room-and-pillar" NbO6/NbO7 framework structure provides a stable host for lithium intercalation; bond valence sum mapping exposes the degenerate diffusion pathways in the sites (rooms) surrounding the oxygen pillars of this complex structure. Electrochemical analysis of thick films of micrometer-sized, insulating niobia particles indicates that the capacity of the T-phase, measured over a fixed potential window, is limited only by the Ohmic drop up to at least 60C (12.1 A·g(-1)), while the higher temperature (Wadsley-Roth, crystallographic shear structure) H-phase shows high intercalation capacity (>200 mA·h·g(-1)) but only at moderate rates. High-resolution (6/7)Li solid-state nuclear magnetic resonance (NMR) spectroscopy of T-Nb2O5 revealed two distinct spin reservoirs, a small initial rigid population and a majority-component mobile distribution of lithium. Variable-temperature NMR showed lithium dynamics for the majority lithium characterized by very low activation energies of 58(2)-98(1) meV. The fast rate, high density, good gravimetric capacity, excellent capacity retention, and safety features of bulk, insulating Nb2O5 synthesized in a single step at relatively low temperatures suggest that this material not only is structurally and electronically exceptional but merits consideration for a range of further applications. In addition, the realization of high rate performance without nanostructuring in a complex insulating oxide expands the field for battery material exploration beyond conventional strategies and structural motifs.K.J.G. gratefully acknowledges funding from The Winston Churchill Foundation of the United States and the Herchel Smith Scholarship. A.C.F. and J.M.G thank the EPSRC, via the Supergen consortium, for funding. A.C.F. is also thankful to the Sims Scholarship for support.This is the final version of the article. It first appeared in the American Chemical Society via http://dx.doi.org/10.1021/jacs.6b0434

    Water Enables Efficient CO2 Capture from Natural Gas Flue Emissions in an Oxidation-Resistant Diamine-Appended Metal-Organic Framework.

    Get PDF
    Supported by increasingly available reserves, natural gas is achieving greater adoption as a cleaner-burning alternative to coal in the power sector. As a result, carbon capture and sequestration from natural gas-fired power plants is an attractive strategy to mitigate global anthropogenic CO2 emissions. However, the separation of CO2 from other components in the flue streams of gas-fired power plants is particularly challenging due to the low CO2 partial pressure (∼40 mbar), which necessitates that candidate separation materials bind CO2 strongly at low partial pressures (≤4 mbar) to capture ≥90% of the emitted CO2. High partial pressures of O2 (120 mbar) and water (80 mbar) in these flue streams have also presented significant barriers to the deployment of new technologies for CO2 capture from gas-fired power plants. Here, we demonstrate that functionalization of the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) with the cyclic diamine 2-(aminomethyl)piperidine (2-ampd) produces an adsorbent that is capable of ≥90% CO2 capture from a humid natural gas flue emission stream, as confirmed by breakthrough measurements. This material captures CO2 by a cooperative mechanism that enables access to a large CO2 cycling capacity with a small temperature swing (2.4 mmol CO2/g with ΔT = 100 °C). Significantly, multicomponent adsorption experiments, infrared spectroscopy, magic angle spinning solid-state NMR spectroscopy, and van der Waals-corrected density functional theory studies suggest that water enhances CO2 capture in 2-ampd-Mg2(dobpdc) through hydrogen-bonding interactions with the carbamate groups of the ammonium carbamate chains formed upon CO2 adsorption, thereby increasing the thermodynamic driving force for CO2 binding. In light of the exceptional thermal and oxidative stability of 2-ampd-Mg2(dobpdc), its high CO2 adsorption capacity, and its high CO2 capture rate from a simulated natural gas flue emission stream, this material is one of the most promising adsorbents to date for this important separation

    Amine Dynamics in Diamine-Appended Mg2(dobpdc) Metal-Organic Frameworks.

    Get PDF
    Variable-temperature 15N solid-state NMR spectroscopy is used to uncover the dynamics of three diamines appended to the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an important family of CO2 capture materials. The results imply both bound and free amine nitrogen environments exist when diamines are coordinated to the framework open Mg2+ sites. There are rapid exchanges between two nitrogen environments for all three diamines, the rates and energetics of which are quantified by 15N solid-state NMR data and corroborated by density functional theory calculations and molecular dynamics simulations. The activation energy for the exchange provides a measure of the metal-amine bond strength. The unexpected negative correlation between the metal-amine bond strength and CO2 adsorption step pressure reveals that metal-amine bond strength is not the only important factor in determining the CO2 adsorption properties of diamine-appended Mg2(dobpdc) metal-organic frameworks

    Structural disorder determines capacitance in nanoporous carbons

    Get PDF
    The difficulty in characterizing the complex structures of nanoporous carbon electrodes has led to a lack of clear design principles with which to improve supercapacitors. Pore size has long been considered the main lever to improve capacitance. However, our evaluation of a large series of commercial nanoporous carbons finds a lack of correlation between pore size and capacitance. Instead, nuclear magnetic resonance spectroscopy measurements and simulations reveal a strong correlation between structural disorder in the electrodes and capacitance. More disordered carbons with smaller graphene-like domains show higher capacitances owing to the more efficient storage of ions in their nanopores. Our findings suggest ways to understand and exploit disorder to achieve highly energy-dense supercapacitors

    Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy

    Get PDF
    Ionic transport inside porous carbon electrodes underpins the storage of energy in supercapacitors and the rate at which they can charge and discharge, yet few studies have elucidated the materials properties that influence ion dynamics. Here we use in situ pulsed field gradient NMR spectroscopy to measure ionic diffusion in supercapacitors directly. We find that confinement in the nanoporous electrode structures decreases the effective self-diffusion coefficients of ions by over two orders of magnitude compared with neat electrolyte, and in-pore diffusion is modulated by changes in ion populations at the electrode/electrolyte interface during charging. Electrolyte concentration and carbon pore size distributions also affect in-pore diffusion and the movement of ions in and out of the nanopores. In light of our findings we propose that controlling the charging mechanism may allow the tuning of the energy and power performances of supercapacitors for a range of different applications

    In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism

    Get PDF
    Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance(NMR) methodologies to study changes at the electrode−electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations
    corecore