3,433 research outputs found

    A Combinatorial Interpretation of the Free Fermion Condition of the Six-Vertex Model

    Full text link
    The free fermion condition of the six-vertex model provides a 5 parameter sub-manifold on which the Bethe Ansatz equations for the wavenumbers that enter into the eigenfunctions of the transfer matrices of the model decouple, hence allowing explicit solutions. Such conditions arose originally in early field-theoretic S-matrix approaches. Here we provide a combinatorial explanation for the condition in terms of a generalised Gessel-Viennot involution. By doing so we extend the use of the Gessel-Viennot theorem, originally devised for non-intersecting walks only, to a special weighted type of \emph{intersecting} walk, and hence express the partition function of NN such walks starting and finishing at fixed endpoints in terms of the single walk partition functions

    Growth models, random matrices and Painleve transcendents

    Full text link
    The Hammersley process relates to the statistical properties of the maximum length of all up/right paths connecting random points of a given density in the unit square from (0,0) to (1,1). This process can also be interpreted in terms of the height of the polynuclear growth model, or the length of the longest increasing subsequence in a random permutation. The cumulative distribution of the longest path length can be written in terms of an average over the unitary group. Versions of the Hammersley process in which the points are constrained to have certain symmetries of the square allow similar formulas. The derivation of these formulas is reviewed. Generalizing the original model to have point sources along two boundaries of the square, and appropriately scaling the parameters gives a model in the KPZ universality class. Following works of Baik and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled cumulative distribution, in which a particular Painlev\'e II transcendent plays a prominent role.Comment: 27 pages, 5 figure

    Random Matrix Theory and the Sixth Painlev\'e Equation

    Full text link
    A feature of certain ensembles of random matrices is that the corresponding measure is invariant under conjugation by unitary matrices. Study of such ensembles realised by matrices with Gaussian entries leads to statistical quantities related to the eigenspectrum, such as the distribution of the largest eigenvalue, which can be expressed as multidimensional integrals or equivalently as determinants. These distributions are well known to be τ\tau-functions for Painlev\'e systems, allowing for the former to be characterised as the solution of certain nonlinear equations. We consider the random matrix ensembles for which the nonlinear equation is the σ\sigma form of \PVI. Known results are reviewed, as is their implication by way of series expansions for the distributions. New results are given for the boundary conditions in the neighbourhood of the fixed singularities at t=0,1,∞t=0,1,\infty of σ\sigma\PVI displayed by a generalisation of the generating function for the distributions. The structure of these expansions is related to Jimbo's general expansions for the τ\tau-function of σ\sigma\PVI in the neighbourhood of its fixed singularities, and this theory is itself put in its context of the linear isomonodromy problem relating to \PVI.Comment: Dedicated to the centenary of the publication of the Painlev\'e VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190

    {\bf Ï„\tau-Function Evaluation of Gap Probabilities in Orthogonal and Symplectic Matrix Ensembles}

    Full text link
    It has recently been emphasized that all known exact evaluations of gap probabilities for classical unitary matrix ensembles are in fact Ï„\tau-functions for certain Painlev\'e systems. We show that all exact evaluations of gap probabilities for classical orthogonal matrix ensembles, either known or derivable from the existing literature, are likewise Ï„\tau-functions for certain Painlev\'e systems. In the case of symplectic matrix ensembles all exact evaluations, either known or derivable from the existing literature, are identified as the mean of two Ï„\tau-functions, both of which correspond to Hamiltonians satisfying the same differential equation, differing only in the boundary condition. Furthermore the product of these two Ï„\tau-functions gives the gap probability in the corresponding unitary symmetry case, while one of those Ï„\tau-functions is the gap probability in the corresponding orthogonal symmetry case.Comment: AMS-Late

    Reunion of Vicious Walkers: Results from ϵ\epsilon-Expansion -

    Get PDF
    The anomalous exponent, ηp\eta_{p}, for the decay of the reunion probability of pp vicious walkers, each of length NN, in dd (=2−ϵ)(=2-\epsilon) dimensions, is shown to come from the multiplicative renormalization constant of a pp directed polymer partition function. Using renormalization group(RG) we evaluate ηp\eta_{p} to O(ϵ2)O(\epsilon^2). The survival probability exponent is ηp/2\eta_{p}/2. For p=2p=2, our RG is exact and ηp\eta_p stops at O(ϵ)O(\epsilon). For d=2d=2, the log corrections are also determined. The number of walkers that are sure to reunite is 2 and has no ϵ\epsilon expansion.Comment: No of pages: 11, 1figure on request, Revtex3,IP/BBSR/929

    Isomonodromic deformation theory and the next-to-diagonal correlations of the anisotropic square lattice Ising model

    Full text link
    In 1980 Jimbo and Miwa evaluated the diagonal two-point correlation function of the square lattice Ising model as a Ï„\tau-function of the sixth Painlev\'e system by constructing an associated isomonodromic system within their theory of holonomic quantum fields. More recently an alternative isomonodromy theory was constructed based on bi-orthogonal polynomials on the unit circle with regular semi-classical weights, for which the diagonal Ising correlations arise as the leading coefficient of the polynomials specialised appropriately. Here we demonstrate that the next-to-diagonal correlations of the anisotropic Ising model are evaluated as one of the elements of this isomonodromic system or essentially as the Cauchy-Hilbert transform of one of the bi-orthogonal polynomials.Comment: 11 pages, 1 figur

    Boundary conditions associated with the Painlev\'e III' and V evaluations of some random matrix averages

    Full text link
    In a previous work a random matrix average for the Laguerre unitary ensemble, generalising the generating function for the probability that an interval (0,s) (0,s) at the hard edge contains k k eigenvalues, was evaluated in terms of a Painlev\'e V transcendent in σ \sigma -form. However the boundary conditions for the corresponding differential equation were not specified for the full parameter space. Here this task is accomplished in general, and the obtained functional form is compared against the most general small s s behaviour of the Painlev\'e V equation in σ \sigma -form known from the work of Jimbo. An analogous study is carried out for the the hard edge scaling limit of the random matrix average, which we have previously evaluated in terms of a Painlev\'e \IIId transcendent in σ \sigma -form. An application of the latter result is given to the rapid evaluation of a Hankel determinant appearing in a recent work of Conrey, Rubinstein and Snaith relating to the derivative of the Riemann zeta function
    • …
    corecore