24 research outputs found

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Prostaglandin regulation of gastric slow waves and peristalsis

    No full text
    Gastric emptying depends on functional coupling of slow waves between the corpus and antrum, to allow slow waves initiated in the gastric corpus to propagate to the pyloric sphincter and generate gastric peristalsis. Functional coupling depends on a frequency gradient where slow waves are generated at higher frequency in the corpus and drive the activity of distal pacemakers. Simultaneous intracellular recording from corpus and antrum was used to characterize the effects of PGE2 on slow waves in the murine stomach. PGE2 increased slow-wave frequency, and this effect was mimicked by EP3, but not by EP2, receptor agonists. Chronotropic effects were due to EP3 receptors expressed by intramuscular interstitial cells of Cajal because these effects were not observed in W/WV mice. Although the integrated chronotropic effects of EP3 receptor agonists were deduced from electrophysiological experiments, no clear evidence of functional uncoupling was observed with two-point electrical recording. Gastric peristalsis was also monitored by video imaging and spatiotemporal maps to study the impact of chronotropic agonists on propagating contractions. EP3 receptor agonists increased the frequency of peristaltic contractions and caused ectopic sites of origin and collisions of peristaltic waves. The impact of selective regional application of chronotropic agonists was investigated by use of a partitioned bath. Antral slow waves followed enhanced frequencies induced by stimulation of the corpus, and corpus slow waves followed when slow-wave frequency was elevated in the antrum. This demonstrated reversal of slow-wave propagation with selective antral chronotropic stimulation. These studies demonstrate the impact of chronotropic agonists on regional intrinsic pacemaker frequency and integrated gastric peristalsis

    Regulation of gastric electrical and mechanical activity by cholinesterases in mice

    No full text
    BACKGROUND/AIMS: Gastric peristalsis begins in the orad corpus and propagates to the pylorus. Directionality of peristalsis depends upon orderly generation and propagation of electrical slow waves and a frequency gradient between proximal and distal pacemakers. We sought to understand how chronotropic agonists affect coupling between corpus and antrum. METHODS: Electrophysiological and imaging techniques were used to investigate regulation of gastric slow wave frequency by muscarinic agonists in mice. We also investigated the expression and role of cholinesterases in regulating slow wave frequency and motor patterns in the stomach. RESULTS: Both acetycholinesterase (Ache) and butyrylcholine esterase (Bche) are expressed in gastric muscles and AChE is localized to varicose processes of motor neurons. Inhibition of AChE in the absence of stimulation increased slow wave frequency in corpus and throughout muscle strips containing corpus and antrum. CCh caused depolarization and increased slow wave frequency. Stimulation of cholinergic neurons increased slow wave frequency but did not cause depolarization. Neostigmine (1 μM) increased slow wave frequency, but uncoupling between corpus and antrum was not detected. Motility mapping of contractile activity in gastric muscles showed similar effects of enteric nerve stimulation on the frequency and propagation of slow waves, but neostigmine (> 1 μM) caused aberrant contractile frequency and propagation and ectopic pacemaking. CONCLUSIONS: Our data show that slow wave uncoupling is difficult to assess with electrical recording from a single or double sites and suggest that efficient metabolism of ACh released from motor neurons is an extremely important regulator of slow wave frequency and propagation and gastric motility patterns

    Molecular Mechanism of TMEM16A Regulation: Role of CaMKII and PP1/PP2A.

    Get PDF
    This study explored the mechanism by which Ca2+-activated Cl-channels (CaCC) encoded by the Tmem16agene are regulated by CaMKII and protein phosphatases 1 (PP1) and 2A (PP2A). Ca2+-activated Cl-currents (IClCa) were recorded from HEK-293 cells expressing mouse TMEM16A. IClCawere evoked using a pipette solution in which free Ca2+concentration ([Ca2+]i) was clamped to 500 nM, in the presence (5 mM) or absence of ATP. With 5 mM ATP, IClCadecayed to below 50% of the initial current magnitude within 10 min after seal rupture. IClCarundown seen with ATP-containing pipette solution was greatly diminished by omitting ATP. IClCarecorded after 20 min of cell dialysis with 0 ATP were more than 2-fold larger than those recorded with 5 mM ATP. Intracellular application of autocamtide-2-related inhibitory peptide (5 µM) or KN-93 (10 µM), two specific CaMKII inhibitors, produced a similar attenuation of TMEM16A rundown. In contrast, internal application of okadaic acid (30 nM) or cantharidin (100 nM), two non-selective PP1 and PP2A blockers, promoted the rundown of TMEM16A in cells dialyzed with 0 ATP. Mutating Serine 528 of TMEM16A to an Alanine led to a similar inhibition of TMEM16Arundown to that exerted by either one of the two CaMKII inhibitors tested, which was not observed for three putative CaMKII consensus sites for phosphorylation (T273, T622 and S730). Our results suggest that TMEM16A-mediated CaCCs are regulated by CaMKII and PP1/PP2A. Our data also suggest that serine 528 of TMEM16A is an important contributor to the regulation of IClCaby CaMKII

    Molecular and functional significance of Ca(2+)-activated Cl(-) channels in pulmonary arterial smooth muscle

    No full text
    Abstract. Increased peripheral resistance of small distal pulmonary arteries is a hallmark signature of pulmonary hypertension (PH) and is believed to be the consequence of enhanced vasoconstriction to agonists, thickening of the arterial wall due to remodeling, and increased thrombosis. The elevation in arterial tone in PH is attributable, at least in part, to smooth muscle cells of PH patients being more depolarized and displaying higher intracellular Ca(2+) levels than cells from normal subjects. It is now clear that downregulation of voltage-dependent K(+) channels (e.g., Kv1.5) and increased expression and activity of voltage-dependent (Cav1.2) and voltage-independent (e.g., canonical and vanilloid transient receptor potential [TRPC and TRPV]) Ca(2+) channels play an important role in the functional remodeling of pulmonary arteries in PH. This review focuses on an anion-permeable channel that is now considered a novel excitatory mechanism in the systemic and pulmonary circulations. It is permeable to Cl(−) and is activated by a rise in intracellular Ca(2+) concentration (Ca(2+)-activated Cl(−) channel, or CaCC). The first section outlines the biophysical and pharmacological properties of the channel and ends with a description of the molecular candidate genes postulated to encode for CaCCs, with particular emphasis on the bestrophin and the newly discovered TMEM16 and anoctamin families of genes. The second section provides a review of the various sources of Ca(2+) activating CaCCs, which include stimulation by mobilization from intracellular Ca(2+) stores and Ca(2+) entry through voltage-dependent and voltage-independent Ca(2+) channels. The third and final section summarizes recent findings that suggest a potentially important role for CaCCs and the gene TMEM16A in PH

    Expression profile and protein translation of TMEM16A in murine smooth muscle

    No full text
    Recently, overexpression of the genes TMEM16A and TMEM16B has been shown to produce currents qualitatively similar to native Ca2+-activated Cl− currents (IClCa) in vascular smooth muscle. However, there is no information about this new gene family in vascular smooth muscle, where Cl− channels are a major depolarizing mechanism. Qualitatively similar Cl− currents were evoked by a pipette solution containing 500 nM Ca2+ in smooth muscle cells isolated from BALB/c mouse portal vein, thoracic aorta, and carotid artery. Quantitative PCR using SYBR Green chemistry and primers specific for transmembrane protein (TMEM) 16A or the closely related TMEM16B showed TMEM16A expression as follows: portal vein > thoracic aorta > carotid artery > brain. In addition, several alternatively spliced variant transcripts of TMEM16A were detected. In contrast, TMEM16B expression was very low in smooth muscle. Western blot analysis with different antibodies directed against TMEM16A revealed a number of products with a consistent band at ∼120 kDa, except portal vein, where an 80-kDa band predominated. TMEM16A protein was identified in the smooth muscle layers of 4-μm-thick slices of portal vein, thoracic aorta, and carotid artery. In isolated myocytes, fluorescence specific to a TMEM16A antibody was detected diffusely throughout the cytoplasm, as well as near the membrane. The same antibody used in Western blot analysis of lysates from vascular tissues also recognized an ∼147-kDa mouse TMEM16A-green fluorescent protein (GFP) fusion protein expressed in HEK 293 cells, which correlated to a similar band detected by a GFP antibody. Patch-clamp experiments revealed that IClCa generated by transfection of TMEM16A-GFP in HEK 293 cells displayed remarkable similarities to IClCa recorded in vascular myocytes, including slow kinetics, steep outward rectification, and a response similar to the pharmacological agent niflumic acid. This study shows that TMEM16A expression is robust in murine vascular smooth muscle cells, consolidating the view that this gene is a viable candidate for the native Ca2+-activated Cl− channel in this cell type

    Complex Phosphatase Regulation of Ca2+-activated Cl− Currents in Pulmonary Arterial Smooth Muscle Cells*

    No full text
    The present study was undertaken to determine whether the two ubiquitously expressed Ca2+-independent phosphatases PP1 and PP2A regulate Ca2+-activated Cl− currents (ICl(Ca)) elicited by 500 nm [Ca2+]i in rabbit pulmonary artery (PA) myocytes dialyzed with or without 3 mm ATP. Reverse transcription-PCR experiments revealed the expression of PP1α, PP1β/δ, PP1γ, PP2Aα, PP2Aβ, PP2Bα (calcineurin (CaN) Aα), and PP2Bβ (CaN Aβ) but not PP2Bγ (CaN Aγ) in rabbit PA. Western blot and immunofluorescence experiments confirmed the presence of all three PP1 isoforms and PP2A. Intracellular dialysis with a peptide inhibitor of calcineurin (CaN-AIP); the non-selective PP1/PP2A inhibitors okadaic acid (0.5, 10, or 30 nm), calyculin A (10 nm), or cantharidin (100 nm); and the selective PP1 inhibitor NIPP-1 (100 pm) potently antagonized the recovery of ICl(Ca) in cells dialyzed with no ATP, whereas the PP2A-selective antagonist fostriecin (30 or 150 nm) was ineffective. The combined application of okadaic acid (10 nm) and CaN-autoinhibitory peptide (50 μm) did not potentiate the response of ICl(Ca) in 0 ATP produced by maximally inhibiting CaN or PP1/PP2A alone. Consistent with the non-additive effects of either classes of phosphatases, the PP1 inhibitor NIPP-1 (100 pm) antagonized the recovery of ICl(Ca) induced by exogenous CaN Aα (0.5 μm). These results demonstrate that ICl(Ca) in PA myocytes is regulated by CaN and PP1 and/or PP2A. Our data also suggest the existence of a functional link between these two classes of phosphatases
    corecore