59 research outputs found

    Tailoring the Phonon Band Structure in Binary Colloidal Mixtures

    Get PDF
    We analyze the phonon spectra of periodic structures formed by two-dimensional mixtures of dipolar colloidal particles. These mixtures display an enormous variety of complex ordered configurations [J. Fornleitner {\it et al.}, Soft Matter {\bf 4}, 480 (2008)], allowing for the systematic investigation of the ensuing phonon spectra and the control of phononic gaps. We show how the shape of the phonon bands and the number and width of the phonon gaps can be controlled by changing the susceptibility ratio, the concentration and the mass ratio between the two components.Comment: 4 pages 3 figure

    Margination of White Blood Cells in Microcapillary Flow

    Get PDF

    Procedure to construct a multi-scale coarse-grained model of DNA-coated colloids from experimental data

    Full text link
    We present a quantitative, multi-scale coarse-grained model of DNA coated colloids. The parameters of this model are transferable and are solely based on experimental data. As a test case, we focus on nano-sized colloids carrying single-stranded DNA strands of length comparable to the colloids' size. We show that in this regime, the common theoretical approach of assuming pairwise additivity of the colloidal pair interactions leads to quantitatively and sometimes even qualitatively wrong predictions of the phase behaviour of DNA-grafted colloids. Comparing to experimental data, we find that our coarse-grained model correctly predicts the equilibrium structure and melting temperature of the formed solids. Due to limited experimental information on the persistence length of single-stranded DNA, some quantitative discrepancies are found in the prediction of spatial quantities. With the availability of better experimental data, the present approach provides a path for the rational design of DNA-functionalised building blocks that can self-assemble in complex, three-dimensional structures.Comment: 17 pages, 10 figures; to be published in Soft Matte

    Novel Ground-State Crystals with Controlled Vacancy Concentrations: From Kagom\'{e} to Honeycomb to Stripes

    Full text link
    We introduce a one-parameter family, 0≤H≤10 \leq H \leq 1, of pair potential functions with a single relative energy minimum that stabilize a range of vacancy-riddled crystals as ground states. The "quintic potential" is a short-ranged, nonnegative pair potential with a single local minimum of height HH at unit distance and vanishes cubically at a distance of \rt. We have developed this potential to produce ground states with the symmetry of the triangular lattice while favoring the presence of vacancies. After an exhaustive search using various optimization and simulation methods, we believe that we have determined the ground states for all pressures, densities, and 0≤H≤10 \leq H \leq 1. For specific areas below 3\rt/2, the ground states of the "quintic potential" include high-density and low-density triangular lattices, kagom\'{e} and honeycomb crystals, and stripes. We find that these ground states are mechanically stable but are difficult to self-assemble in computer simulations without defects. For specific areas above 3\rt/2, these systems have a ground-state phase diagram that corresponds to hard disks with radius \rt. For the special case of H=0, a broad range of ground states is available. Analysis of this case suggests that among many ground states, a high-density triangular lattice, low-density triangular lattice, and striped phases have the highest entropy for certain densities. The simplicity of this potential makes it an attractive candidate for experimental realization with application to the development of novel colloidal crystals or photonic materials.Comment: 25 pages, 11 figure

    Quantitative prediction of the phase diagram of DNA-functionalized nano-colloids

    Full text link
    We present a coarse-grained model of DNA-functionalized colloids that is computationally tractable. Importantly, the model parameters are solely based on experimental data. Using this highly simplified model, we can predict the phase behavior of DNA-functionalized nano-colloids without assuming pairwise additivity of the inter-colloidal interactions. Our simulations show that for nano-colloids, the assumption of pairwise additivity leads to substantial errors in the estimate of the free energy of the crystal phase. We compare our results with available experimental data and find that the simulations predict the correct structure of the solid phase and yield a very good estimate of the melting temperature. Current experimental estimates for the contour length and persistence length of single-stranded DNA sequences are subject to relatively large uncertainties. Using the best available estimates, we obtain predictions for the crystal lattice constants that are off by a few percent: this indicates that more accurate experimental data on ssDNA are needed to exploit the full power of our coarse-grained approach.Comment: 4 pages, 2 figures; accepted for publication in Phys. Rev. Let

    Lane-formation vs. cluster-formation in two dimensional square-shoulder systems: A genetic algorithm approach

    Full text link
    Introducing genetic algorithms as a reliable and efficient tool to find ordered equilibrium structures, we predict minimum energy configurations of the square shoulder system for different values of corona width λ\lambda. Varying systematically the pressure for different values of λ\lambda we obtain complete sequences of minimum energy configurations which provide a deeper understanding of the system's strategies to arrange particles in an energetically optimized fashion, leading to the competing self-assembly scenarios of cluster-formation vs. lane-formation.Comment: 5 pages, 6 figure

    Self-assembly of binary nanoparticle dispersions: from square arrays and stripe phases to colloidal corrals

    Full text link
    The generation of nanoscale square and stripe patterns is of major technological importance since they are compatible with industry-standard electronic circuitry. Recently, a blend of diblock copolymer interacting via hydrogen-bonding was shown to self-assemble in square arrays. Motivated by those experiments we study, using Monte Carlo simulations, the pattern formation in a two-dimensional binary mixture of colloidal particles interacting via isotropic core-corona potentials. We find a rich variety of patterns that can be grouped mainly in aggregates that self-assemble in regular square lattices or in alternate strips. Other morphologies observed include colloidal corrals that are potentially useful as surface templating agents. This work shows the unexpected versatility of this simple model to produce a variety of patterns with high technological potential.Comment: 13 pages, 5 figures, submitte

    The zero-temperature phase diagram of soft-repulsive particle fluids

    Full text link
    Effective pair interactions with a soft-repulsive component are a well-known feature of polymer solutions and colloidal suspensions, but they also provide a key to interpret the high-pressure behaviour of simple elements. We have computed the zero-temperature phase diagram of four different model potentials with various degrees of core softness. Among the reviewed crystal structures, there are also a number of non-Bravais lattices, chosen among those observed in real systems. Some of these crystals are indeed found to be stable for the selected potentials. We recognize an apparently universal trend for unbounded potentials, going from high- to low-coordinated crystal phases and back upon increasing the pressure. Conversely, a bounded repulsion may lead to intermittent appearance of compact structures with compression and no eventual settling down in a specific phase. In both cases, the fluid phase repeatedly reenters at intermediate pressures, as suggested by a cell-theory treatment of the solids. These findings are of relevance for soft matter in general, but they also offer fresh insight into the mechanisms subtended to solid polymorphism in elemental substances.Comment: 16 pages, 5 figures, to be published on Soft Matte
    • …
    corecore