17 research outputs found

    Electrocatalytic oxidation of methanol by the [Ru3O(OAc)6(py)2(CH3OH)] 3+ cluster: improving the metal-ligand electron transfer by accessing the higher oxidation states of a multicentered system

    Get PDF
    The [Ru3O(Ac)6(py)2(CH3OH)] + cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states331020462050CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçã

    Electrocatalytic oxidation of methanol by the [Ru3O(OAc)6(py)2(CH3OH)]3+cluster: improving the metal-ligand electron transfer by accessing the higher oxidation states of a multicentered system

    Full text link
    The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states

    Theoretical and experimental study on supramolecular structures obtained with trinuclear ruthenium clusters and porphyrins

    No full text
    A química supramolecular de porfirinas e clusters trinucleares de rutênio foi investigada sob o ponto de vista teórico-experimental. Através do desenvolvimento de uma nova metodologia baseada em ferramentas teóricas, as propriedades desses sistemas puderam ser explicadas à luz da mecânica quântica, revelando os mecanismos eletrônicos envolvidos na modificação das propriedades dos anéis porfirínicos pelos compostos de coordenação. As geometrias, a dinâmica e as estruturas eletrônicas desses sistemas foram obtidas através do desenvolvimento de novos parâmetros para campos de força empíricos, e da utilização de métodos semi-empíricos e ab initio. Essas foram utilizadas para interpretar as propriedades físico-químicas dos mesmos, como por exemplo a associação intermolecular em solução e na forma de filmes finos obtidos sobre superfícies não rugosas. O estudo teórico detalhado das estruturas eletrônicas dessas espécies comprovou que a influência supramolecular dos compostos de coordenação se dá através de orbitais de simetria π, representando o principal mecanismo de ativação de anéis porfirínicos por compostos de coordenação. Essa ativação diferenciada pôde ser evidenciada experimentalmente pela aplicação dessas espécies em células fotoeletroquímicas e em sistemas de catálise com atividade citocromo P-450.The supramolecular chemistry of porphyrins and trinuclear ruthenium clusters has been investigated by a theoretical-experimental approach. Through the development of a new methodology based on theoretical tools, their relevant properties were explained using quantum mechanics, disclosing the electronic mechanisms by which coordination compounds modify the properties of porphyrin rings. Geometries, dynamics and electronic structures of these systems have been obtained by the development of new parameters for empirical force fields, and through semiempirical and ab initio methods. They have been used to explain the physical-chemical properties as, for example, the intermolecular association in solution, and thin film formation over flat surfaces. According to the detailed theoretical study coordination compounds increase the catalytic activity of porphyrin rings via π-orbital coupling, and this is the main mechanism of porphyrin activation. Such enhanced activity has been experimentally observed in photoelectrochemical devices and in the oxidation catalysis of organic substrates, providing synthetic models of cytochrome P-450 systems

    Theoretical and experimental study on supramolecular structures obtained with trinuclear ruthenium clusters and porphyrins

    No full text
    A química supramolecular de porfirinas e clusters trinucleares de rutênio foi investigada sob o ponto de vista teórico-experimental. Através do desenvolvimento de uma nova metodologia baseada em ferramentas teóricas, as propriedades desses sistemas puderam ser explicadas à luz da mecânica quântica, revelando os mecanismos eletrônicos envolvidos na modificação das propriedades dos anéis porfirínicos pelos compostos de coordenação. As geometrias, a dinâmica e as estruturas eletrônicas desses sistemas foram obtidas através do desenvolvimento de novos parâmetros para campos de força empíricos, e da utilização de métodos semi-empíricos e ab initio. Essas foram utilizadas para interpretar as propriedades físico-químicas dos mesmos, como por exemplo a associação intermolecular em solução e na forma de filmes finos obtidos sobre superfícies não rugosas. O estudo teórico detalhado das estruturas eletrônicas dessas espécies comprovou que a influência supramolecular dos compostos de coordenação se dá através de orbitais de simetria π, representando o principal mecanismo de ativação de anéis porfirínicos por compostos de coordenação. Essa ativação diferenciada pôde ser evidenciada experimentalmente pela aplicação dessas espécies em células fotoeletroquímicas e em sistemas de catálise com atividade citocromo P-450.The supramolecular chemistry of porphyrins and trinuclear ruthenium clusters has been investigated by a theoretical-experimental approach. Through the development of a new methodology based on theoretical tools, their relevant properties were explained using quantum mechanics, disclosing the electronic mechanisms by which coordination compounds modify the properties of porphyrin rings. Geometries, dynamics and electronic structures of these systems have been obtained by the development of new parameters for empirical force fields, and through semiempirical and ab initio methods. They have been used to explain the physical-chemical properties as, for example, the intermolecular association in solution, and thin film formation over flat surfaces. According to the detailed theoretical study coordination compounds increase the catalytic activity of porphyrin rings via π-orbital coupling, and this is the main mechanism of porphyrin activation. Such enhanced activity has been experimentally observed in photoelectrochemical devices and in the oxidation catalysis of organic substrates, providing synthetic models of cytochrome P-450 systems

    Probing the electronic delocalization in a cyclic pyrazine ruthenium cluster hexamer

    No full text
    [Ru3O(CH3COO)6(pz)(CO)]6 is a cyclic hexamer species encompassing six triangular ruthenium cluster centers bridged by pyrazine ligands. The electronic communication among the cluster units strongly depends on their oxidation states, and has been successfully probed by means of cyclic voltammetry and UV–vis spectroelectrochemistry13910321035CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçã

    Contrasting photoelectrochemical behaviour of two isomeric supramolecular dyes based on meso-tetra(pyridyl)porphyrin incorporating four (mu(3)-oxo)- triruthenium(III) clusters

    No full text
    A saddle shaped tetracluster porphyrin species containing four [Ru3O(OAc)6(py)2]+ clusters coordinated to the N-pyridyl atoms of 5,10,15,20-tetra(3-pyridyl)porphyrin, H2(3-TCPyP), has been investigated in comparison with the planar tetra(4-pyridyl)porphyrin analogue H2(4-TCPyP). The steric effects from the bulky peripheral complexes play a critical role in the H2(3-TCPyP) species, determining a non-planar configuration around the porphyrin centre and precluding any significant π-electronic coupling, in contrast with the less hindered H2(4-TCPyP) species. Both systems exhibit a photoelectrochemical response in the presence of nanocrystalline TiO2 films, involving the porphyrin excitation around 450 nm. However, only in the H2(4-TCPyP) case do the cluster moieties also contribute to the photoinduced electron injection process at 670 nm, reflecting the relevance of the electronic coupling between the porphyrin centre and the peripheral complexes32711671174CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçã

    Copper transporter 1 affinity as a delivery strategy to improve the cytotoxic profile of rationally designed copper(II) complexes for cancer treatment

    No full text
    Cisplatin is widely used to treat different types of cancer, but its severe side effects are the major disadvantage of this treatment. Therefore, other metals are currently the subject of research in the rational development of anticancer drugs, such as copper, that has been demonstrated to be promising in this scenario. Here, we evaluated the effects of two novel copper complexes against breast cancer cell lines, and also examined the influence of overexpressing copper transporter 1 (CTR1) on the cytotoxicity of these complexes. Complex (1) [Cu(sdmx−)2(phen)] showed low IC50 values, induced intense cell morphological changes and arrested the cell cycle at the sub-G1 phase in cancer cells. Complex (1) was tested in transfected cells overexpressing the CTR1 receptor in order to compare its steric effects with a less bulky ligand and more labile complex (2) [CuCl2(impy)]. A significant reduction of IC50 value was observed in CTR1 overexpressing cells for complex (2) (32 μM to 20 μM) as compared to (1) (2.78 μM to 3.41 μM), evidencing a possible uptake through copper reduction (Cu+2 → Cu+1) mediated by CTR1. Thus, considering that CTR1 is a mediator of metallodrugs uptake, the development of strategies that use rational drug design is important in order to improve the therapeutic efficacy through greater specificity and consecutive reduction of side effects. Here we show the example for the case of copper(II) complexes67FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2015/20882-3; 2017/19504-0; 2018/17170-0; 2013/07600-3; 2018/12062-

    Photocytotoxic activity of a nitrosyl phthalocyanine ruthenium complex — a system capable of producing nitric oxide and singlet oxygen

    No full text
    The synthesis, structural aspects, pharmacological assays, and in vitro photoinduced cytotoxic properties of [Ru(NO)(ONO)(pc)] (pc = phthalocyanine) are described. Its biological effect on the B16F10 cell line was studied in the presence and absence of visible light irradiation. At comparable irradiation levels, [Ru(NO)(ONO)(pc)] was more effective than [Ru(pc)] at inhibiting cell growth, suggesting that occurrence of nitric oxide release following singlet oxygen production upon light irradiation may be an important mechanism by which the nitrosyl ruthenium complex exhibits enhanced biological activity in cells. Following visible light activation, the [Ru(NO)(ONO)(pc)] complex displayed increased potency in B16F10 cells upon modifications to the photoinduced dose; indeed, enhanced potency was detected when the nitrosyl ruthenium complex was encapsulated in a drug delivery system. The liposome containing the [Ru(NO)(ONO)(pc)] complex was over 25% more active than the corresponding ruthenium complex in phosphate buffer solution. The activity of the complex was directly proportional to the ruthenium amount present inside the cell, as determined by inductively coupled plasma mass spectroscopy. Flow cytometry analysis revealed that the photocytotoxic activity was mainly due to apoptosis. Furthermore, the vasorelaxation induced by [Ru(NO)(ONO)(pc)], proposed as NO carrier, was studied in rat isolated aorta. The observed vasodilation was concentration-dependent. Taken together, the present findings demonstrate that the [Ru(NO)(ONO)(pc)] complex induces vascular relaxation and could be a potent anti-tumor agent. Nitric oxide release following singlet oxygen production upon visible light irradiation on a nitrosyl ruthenium complex produces two radicals and may elicit phototoxic responses that may find useful applications in photodynamic therapy105810351043CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçã
    corecore