7,057 research outputs found
Thermionic cathode life test studies
An update on the life testing of commerical, high current density impregnated tungsten cathodes is presented. The B-type cathodes, operated at a current density of 2 A/cm2 and a cathode temperature of 1100 C have now been run satisfactorily for more than four years. The M-cathode, at the same current density but at an operating temperature of only 1010 C, have been tested for more than three years. The M-cathodes show no degradation in current over their present operating life whereas the current from the B-cathodes degrade about 6 percent after four years of operation
Gas flows in elliptical galaxies
In preparation for the next generation of x ray telescopes, researchers have begun a program investigating the evolving x ray properties of elliptical galaxies. Their galaxy models consist of a modified King profile for the luminous portion of the galaxy and can include an isothermal dark halo comprising 90 percent of the total mass. The stellar population is assumed to form at a rate which decreases exponentially on a dynamical time scale with a Salpeter initial mass function. Stellar mass loss occurs instantaneously as stars evolve off the main sequence. All stars more massive than 8 solar mass produce type II supernovae, while less massive stars loss mass through a planetary nebulae. The evolving rate of type I supernovae is normalized to a fraction, gamma sub sn I, of Tammann's (1974) value. All of this information is then incorporated into a one-dimensional hydrodynamics code to determine the evolving dynamical state of the interstellar medium
Kelvin-Helmholtz instabilities at the sloshing cold fronts in the Virgo cluster as a measure for the effective ICM viscosity
Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing.
Their detailed structure depends on the properties of the intra-cluster medium
(ICM): hydrodynamical simulations predict the CFs to be distorted by
Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity,
or thermal conduction can suppress the KHIs. Thus, observing the detailed
structure of sloshing CFs can be used to constrain these ICM properties. Both
smooth and distorted sloshing CFs have been observed, indicating that the KHI
is suppressed in some clusters, but not in all. Consequently, we need to
address at least some sloshing clusters individually before drawing general
conclusions about the ICM properties. We present the first detailed attempt to
constrain the ICM properties in a specific cluster from the structure of its
sloshing CF. Proximity and brightness make the Virgo cluster an ideal target.
We combine observations and Virgo-specific hydrodynamical sloshing simulations.
Here we focus on a Spitzer-like temperature dependent viscosity as a mechanism
to suppress the KHI, but discuss the alternative mechanisms in detail. We
identify the CF at 90 kpc north and north-east of the Virgo center as the best
location in the cluster to observe a possible KHI suppression. For viscosities
10% of the Spitzer value KHIs at this CF are suppressed. We describe
in detail the observable signatures at low and high viscosities, i.e. in the
presence or absence of KHIs. We find indications for a low ICM viscosity in
archival XMM-Newton data and demonstrate the detectability of the predicted
features in deep Chandra observations.Comment: Accepted for ApJ; 15 pages, 11 figures. A movie can be found here:
http://www.hs.uni-hamburg.de/DE/Ins/Per/Roediger/research.html#Virgo-viscou
On the Nature of X-ray Surface Brightness Fluctuations in M87
X-ray images of galaxy clusters and gas-rich elliptical galaxies show a
wealth of small-scale features which reflect fluctuations in density and/or
temperature of the intra-cluster medium. In this paper we study these
fluctuations in M87/Virgo, to establish whether sound waves/shocks, bubbles or
uplifted cold gas dominate the structure. We exploit the strong dependence of
the emissivity on density and temperature in different energy bands to
distinguish between these processes. Using simulations we demonstrate that our
analysis recovers the leading type of fluctuation even in the presence of
projection effects and temperature gradients. We confirm the isobaric nature of
cool filaments of gas entrained by buoyantly rising bubbles, extending to 7' to
the east and south-west, and the adiabatic nature of the weak shocks at 40" and
3' from the center. For features of 5--10 kpc, we show that the central 4'x 4'
region is dominated by cool structures in pressure equilibrium with the ambient
hotter gas while up to 30 percent of the variance in this region can be
ascribed to adiabatic fluctuations. The remaining part of the central 14'x14'
region, excluding the arms and shocks described above, is dominated by
apparently isothermal fluctuations (bubbles) with a possible admixture (at the
level of about 30 percent) of adiabatic (sound waves) and by isobaric
structures. Larger features, of about 30 kpc, show a stronger contribution from
isobaric fluctuations. The results broadly agree with an AGN feedback model
mediated by bubbles of relativistic plasma.Comment: 16 pages, submitted to Ap
Role of Electon Excitation and Nature of Molecular Gas in Cluster Central Elliptical Galaxies
We present observations in CO(3-2) that, combined with previous observations
in CO(2-1), constrain the physical properties of the filamentary molecular gas
in the central 6.5 kpc of NGC 1275, the central giant elliptical galaxy
of the Perseus cluster. We find this molecular gas to have a temperature
K and a density -, typically
warmer and denser than the bulk of Giant Molecular Clouds (GMCs) in the Galaxy.
Bathed in the harsh radiation and particle field of the surrounding
intracluster X-ray gas, the molecular gas likely has a much higher ionization
fraction than that of GMCs. For an ionization fraction of ,
similar to that of Galactic diffuse ()
partially-molecular clouds that emit in HCN(1-0) and HCO(1-0), we show that
the same gas traced in CO can produce the previously reported emissions in
HCN(3-2), HCO(3-2), and CN(2-1) from NGC 1275; the dominant source of
excitation for all the latter molecules is collisions with electrons. To
prevent collapse, as evidenced by the lack of star formation in the molecular
filaments, they must consist of thin strands that have cross-sectional radii
0.2-2 pc if supported solely by thermal gas pressure; larger radii
are permissible if turbulence or poloidal magnetic fields provide additional
pressure support. We point out that the conditions required to relate CO
luminosities to molecular gas masses in our Galaxy are unlikely to apply in
cluster central elliptical galaxies. Rather than being virialized structures
analogous to GMCs, we propose that the molecular gas in NGC 1275 comprises
pressure-confined structures created by turbulent flows.Comment: 41 pages, 1 table, 12 figures; accepted by Ap
Viscous Kelvin-Helmholtz instabilities in highly ionised plasmas
Transport coefficients in highly ionised plasmas like the intra-cluster
medium (ICM) are still ill-constrained. They influence various processes, among
them the mixing at shear flow interfaces due to the Kelvin-Helmholtz
instability (KHI). The observed structure of potential mixing layers can be
used to infer the transport coefficients, but the data interpretation requires
a detailed knowledge of the long-term evolution of the KHI under different
conditions. Here we present the first systematic numerical study of the effect
of constant and temperature-dependent isotropic viscosity over the full range
of possible values. We show that moderate viscosities slow down the growth of
the KHI and reduce the height of the KHI rolls and their rolling-up.
Viscosities above a critical value suppress the KHI. The effect can be
quantified in terms of the Reynolds number Re = U{\lambda}/{\nu}, where U is
the shear velocity, {\lambda} the perturbation length, and {\nu} the kinematic
viscosity. We derive the critical Re for constant and temperature dependent,
Spitzer-like viscosities, an empirical relation for the viscous KHI growth time
as a function of Re and density contrast, and describe special behaviours for
Spitzer-like viscosities and high density contrasts. Finally, we briefly
discuss several astrophysical situations where the viscous KHI could play a
role, i.e., sloshing cold fronts, gas stripping from galaxies, buoyant
cavities, ICM turbulence, and high velocity clouds.Comment: Accepted by MNRAS. 22 pages, 21 figure
- …