150 research outputs found
Using a virtual environment to assess cognition in the elderly
YesEarly diagnosis of Alzheimer’s disease (AD) is essential if treatments are to be administered at an earlier point in time before neurons degenerate to a stage beyond repair. In order for early detection to occur tools used to detect the disorder must be sensitive to the earliest of cognitive impairments. Virtual reality (VR) technology offers opportunities to provide products which attempt to mimic daily life situations, as much as is possible, within the computational environment. This may be useful for the detection of cognitive difficulties. We develop a virtual simulation designed to assess visuospatial memory in order to investigate cognitive function in a group of healthy elderly participants and those with a mild cognitive impairment. Participants were required to guide themselves along a virtual path to reach a virtual destination which they were required to remember. The preliminary results indicate that this virtual simulation has the potential to be used for detection of early AD since significant correlations of scores on the virtual environment with existing neuropsychological tests were found. Furthermore, the test discriminated between healthy elderly participants and those with a mild cognitive impairment (MCI)
Lithium Treatment of APPSwDI/NOS2−/− Mice Leads to Reduced Hyperphosphorylated Tau, Increased Amyloid Deposition and Altered Inflammatory Phenotype
Lithium is an anti-psychotic that has been shown to prevent the hyperphosphorylation of tau protein through the inhibition of glycogen-synthase kinase 3-beta (GSK3β). We recently developed a mouse model that progresses from amyloid pathology to tau pathology and neurodegeneration due to the genetic deletion of NOS2 in an APP transgenic mouse; the APPSwDI/NOS2−/− mouse. Because this mouse develops tau pathology, amyloid pathology and neuronal loss we were interested in the effect anti-tau therapy would have on amyloid pathology, learning and memory. We administered lithium in the diets of APPSwDI/NOS2−/− mice for a period of eight months, followed by water maze testing at 12 months of age, immediately prior to sacrifice. We found that lithium significantly lowered hyperphosphorylated tau levels as measured by Western blot and immunocytochemistry. However, we found no apparent neuroprotection, no effect on spatial memory deficits and an increase in histological amyloid deposition. Aβ levels measured biochemically were unaltered. We also found that lithium significantly altered the neuroinflammatory phenotype of the brain, resulting in enhanced alternative inflammatory response while concurrently lowering the classical inflammatory response. Our data suggest that lithium may be beneficial for the treatment of tauopathies but may not be beneficial for the treatment of Alzheimer's disease
The use of the Clock Drawing Test in bipolar disorder with or without dementia of Alzheimer’s type
Cognitive Changes and Quality of Life in Neurocysticercosis: A Longitudinal Study
Neurocysticercosis (NCC) is one of the most common parasitic infections of the central nervous system. Cognitive changes have been frequently reported with this disease but have not been well studied. Our study team recruited a group of new onset NCC cases and a matched set of healthy neighborhood controls and new onset epilepsy controls in Lima, Peru for this study. A neuropsychological battery was administered at baseline and at 6 months to all groups. Brain MRI studies were also obtained on NCC cases at baseline and at 6 months. Newly diagnosed patients with NCC had mild cognitive deficits and more marked decreases in quality of life at baseline compared with controls. Improvements were found in both cognitive status and quality of life in patients with NCC after treatment. This study is the first to assess cognitive status and quality of life longitudinally in patients with NCC and provides new data on an important clinical morbidity outcome
Cost-Effectiveness of Magnetic Resonance Imaging with a New Contrast Agent for the Early Diagnosis of Alzheimer's Disease
Background: Used as contrast agents for brain magnetic resonance imaging (MRI), markers for beta-amyloid deposits might allow early diagnosis of Alzheimer’s disease (AD). We evaluated the cost-effectiveness of such a diagnostic test, MRI+CLP (contrastophore-linker-pharmacophore), should it become clinically available. Methodology/Principal Findings: We compared the cost-effectiveness of MRI+CLP to that of standard diagnosis using currently available cognition tests and of standard MRI, and investigated the impact of a hypothetical treatment efficient in early AD. The primary analysis was based on the current French context for 70-year-old patients with Mild Cognitive Impairment (MCI). In alternative ‘‘screen and treat’ ’ scenarios, we analyzed the consequences of systematic screenings of over-60 individuals (either population-wide or restricted to the ApoE4 genotype population). We used a Markov model of AD progression; model parameters, as well as incurred costs and quality-of-life weights in France were taken from the literature. We performed univariate and probabilistic multivariate sensitivity analyses. The base-case preferred strategy was the standard MRI diagnosis strategy. In the primary analysis however, MRI+CLP could become the preferred strategy under a wide array of scenarios involving lower cost and/or higher sensitivity or specificity. By contrast, in the ‘‘screen and treat’’ analyses, the probability of MRI+CLP becoming the preferred strategy remained lower than 5%. Conclusions/Significance: It is thought that anti-beta-amyloid compounds might halt the development of dementia i
Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease.
Alexander disease is a fatal neurodegenerative disease caused by mutations in the astrocyte intermediate filament glial fibrillary acidic protein (GFAP). The disease is characterized by elevated levels of GFAP and the formation of protein aggregates, known as Rosenthal fibers, within astrocytes. Lithium has previously been shown to decrease protein aggregates by increasing the autophagy pathway for protein degradation. In addition, lithium has also been reported to decrease activation of the transcription factor STAT3, which is a regulator of GFAP transcription and astrogliogenesis. Here we tested whether lithium treatment would decrease levels of GFAP in a mouse model of Alexander disease. Mice with the Gfap-R236H point mutation were fed lithium food pellets for 4 to 8 weeks. Four weeks of treatment with LiCl at 0.5% in food pellets decreased GFAP protein and transcripts in several brain regions, although with mild side effects and some mortality. Extending the duration of treatment to 8 weeks resulted in higher mortality, and again with a decrease in GFAP in the surviving animals. Indicators of autophagy, such as LC3, were not increased, suggesting that lithium may decrease levels of GFAP through other pathways. Lithium reduced the levels of phosphorylated STAT3, suggesting this as one pathway mediating the effects on GFAP. In conclusion, lithium has the potential to decrease GFAP levels in Alexander disease, but with a narrow therapeutic window separating efficacy and toxicity
- …