917 research outputs found

    Magnetic properties of Yb2Mo2O7 and Gd2Mo2O7 from rare earth Mossbauer measurements

    Full text link
    Using 170-Yb and 155-Gd Mossbauer measurements down to 0.03K, we have examined the semiconducting pyrochlore Yb2Mo2O7 where the Mo intra-sublattice interaction is anti-ferromagnetic and the metallic pyrochlore Gd2Mo2O7 where this interaction is ferromagnetic. Additional information was obtained from susceptibility, magnetisation and 172-Yb perturbed angular correlation measurements. The microscopic measurements evidence lattice disorder which is important in Yb2Mo2O7 and modest in Gd2Mo2O7. Magnetic irreversibilities occur at 17K in Yb2Mo2O7 and at 75K in Gd2Mo2O7 and below these temperatures the rare earths carry magnetic moments which are induced through couplings with the Mo sublattice. In Gd2Mo2O7, we observe the steady state Gd hyperfine populations at 0.027K are out of thermal equilibrium, indicating that Gd and Mo spin fluctuations persist at very low temperatures. Frustration is thus operative in this essentially isotropic pyrochlore where the dominant Mo intra-sublattice interaction is ferromagnetic.Comment: 9 pages, 9 figure

    Testing evidence of recent hydration state change in sulfates on Mars

    Get PDF
    The East Candor Interior Layered Deposit (ILD) has signatures of mono‐ and polyhydrated sulfate in alternating layers that give insight into the processes which formed these layered deposits and on the environmental conditions acting on them since then. We use orbital data to explore multiple hypotheses for how these deposits formed: (1) sulfate‐bearing ILDs experience hydration changes on seasonal to a few years timescales under current Mars environmental conditions; (2) the deposits experience hydration under recent Mars conditions but require the wetter climate of high obliquity; and (3) the kieserite could be an original or diagenetic part of a complex evaporite mineral assemblage. Modeled climatology shows recent Mars environmental conditions might pass between multiple sulfate fields. However, comparison of Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) and Compact Reconnaissance Imaging Spectrometer (CRISM) observations of the same ILD do not show changes in hydration over 2 Mars years. Low temperatures might slow the kinetics of that transition; it is likely that more clement conditions during periods of high obliquity are needed to overcome mineral metastability and hydrate kieserite‐bearing deposits. We find the alternate model, that the deposit is a cyclic evaporite sequence of mono‐ and polyhydrated sulfates, also plausible but with an unexplained dearth of Fe sulfates

    Absence of large nanoscale electronic inhomogeneities in the Ba(Fe1-xCox)2As2 pnictide

    Full text link
    75As NMR and susceptiblity were measured in a Ba(Fe1-xCox)2As2 single crystal for x=6% for various field H values and orientations. The sharpness of the superconducting and magnetic transitions demonstrates a homogeneity of the Co doping x better than +-0.25%. On the nanometer scale, the paramagnetic part of the NMR spectra is found very anisotropic and very narrow for H//ab which allows to rule out the interpretation of Ref.[6] in terms of strong Co induced electronic inhomogeneities. We propose that a distribution of hyperfine couplings and chemical shifts due to the Co effect on its nearest As explains the observed linewidths and relaxations. All these measurements show that Co substitution induces a very homogeneous electronic doping in BaFe2As2, from nano to micrometer lengthscales, on the contrary to the K doping.Comment: 6 pages, 4 figure

    Variational assimilation of Lagrangian data in oceanography

    Get PDF
    We consider the assimilation of Lagrangian data into a primitive equations circulation model of the ocean at basin scale. The Lagrangian data are positions of floats drifting at fixed depth. We aim at reconstructing the four-dimensional space-time circulation of the ocean. This problem is solved using the four-dimensional variational technique and the adjoint method. In this problem the control vector is chosen as being the initial state of the dynamical system. The observed variables, namely the positions of the floats, are expressed as a function of the control vector via a nonlinear observation operator. This method has been implemented and has the ability to reconstruct the main patterns of the oceanic circulation. Moreover it is very robust with respect to increase of time-sampling period of observations. We have run many twin experiments in order to analyze the sensitivity of our method to the number of floats, the time-sampling period and the vertical drift level. We compare also the performances of the Lagrangian method to that of the classical Eulerian one. Finally we study the impact of errors on observations.Comment: 31 page

    Thermopower in the strongly overdoped region of single-layer Bi2Sr2CuO6+d superconductor

    Full text link
    The evolution of the thermoelectric power S(T) with doping, p, of single-layer Bi2Sr2CuO6+d ceramics in the strongly overdoped region is studied in detail. Analysis in term of drag and diffusion contributions indicates a departure of the diffusion from the T-linear metallic behavior. This effect is increased in the strongly overdoped range (p~0.2-0.28) and should reflect the proximity of some topological change.Comment: 4 pages, 4 figure

    The Rho GDI Rdi1 regulates Rho GTPases by distinct mechanisms

    Get PDF
    © 2008 by The American Society for Cell Biology. Under the License and Publishing Agreement, authors grant to the general public, effective two months after publication of (i.e.,. the appearance of) the edited manuscript in an online issue of MBoC, the nonexclusive right to copy, distribute, or display the manuscript subject to the terms of the Creative Commons–Noncommercial–Share Alike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0).The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3β homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases.Deutsche Forschungsgemeinschaf
    corecore