2,586 research outputs found
Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea
Gap junctional intercellular communication (GJIC) plays a major role in cochlear function. Recent evidence suggests that connexin 26 (Cx26) and Cx30 are the major constituent proteins of cochlear gap junction channels, possibly in a unique heteromeric configuration. We investigated the functional and structural properties of native cochlear gap junctions in rats, from birth to the onset of hearing [ postnatal day 12 (P12)]. Confocal immunofluorescence revealed increasing Cx26 and Cx30 expression from P0 to P12. Functional GJIC was assessed by coinjection of Lucifer yellow (LY) and Neurobiotin (NBN) during whole-cell recordings in cochlear slices. At P0, there was restricted dye transfer between supporting cells around outer hair cells. Transfer was more extensive between supporting cells around inner hair cells. At P8, there was extensive transfer of both dyes between all supporting cell types. By P12, LY no longer transferred between the supporting cells immediately adjacent to hair cells but still transferred between more peripheral cells. NBN transferred freely, but it did not transfer between inner and outer pillar cells. Freeze fracture further demonstrated decreasing GJIC between inner and outer pillar cells around the onset of hearing. These data are supportive of the appearance of signal-selective gap junctions around the onset of hearing, with specific properties required to support auditory function. Furthermore, they suggest that separate medial and lateral buffering compartments exist in the hearing cochlea, which are individually dedicated to the homeostasis of inner hair cells and outer hair cells
Linial arrangements and local binary search trees
We study the set of NBC sets (no broken circuit sets) of the Linial
arrangement and deduce a constructive bijection to the set of local binary
search trees. We then generalize this construction to two families of Linial
type arrangements for which the bijections are with some -ary labelled trees
that we introduce for this purpose.Comment: 13 pages, 1 figure. arXiv admin note: text overlap with
arXiv:1403.257
Will Broadband Networks Make the World Greener? Evaluating Pros and Cons of Broadband Development
The environmental issue has generally received much attention from the public for decades, especially as a result of heavy industry - electrical energy, oil and gas, mining, steel and metals. Recently, attention has been paid to Information and Communication Technology (ICT) and its effect on the knowledge and related industries. Broadband, both fixed and mobile, is not an exception. Even though it has been recognized as a factor that has contributed to social and economic development, anegative effect can also be seen in particular regarding the environment. This paper provides a review of how government policy, in particular by the EU and Japan, are moving towards the transition to sustainability by utilizing ICT, as well as an evaluation of the pros and cons of broadband development. There are many complex effects on sustainability due to ICT. Since ICT can have environmental effects both as enabling energy efficiency and causing rebound effects, the policies should respond to both direct and indirect effects. To facilitate policy analysis and recommendations, this paper categorizes ICT impacts by five orders of aggregation. These five orders of aggregation may contribute both positively and negatively to sustainability, and each level will need targeted policies. The five orders of aggregation suggest a comprehensive and long term view of policy development, encompassing even policies that seek to improve the quality of decision making in our societies, by utilizing ICTs.broadband, sustainable development, green ICT.
An elementary chromatic reduction for gain graphs and special hyperplane arrangements
A gain graph is a graph whose edges are labelled invertibly by "gains" from a
group. "Switching" is a transformation of gain graphs that generalizes
conjugation in a group. A "weak chromatic function" of gain graphs with gains
in a fixed group satisfies three laws: deletion-contraction for links with
neutral gain, invariance under switching, and nullity on graphs with a neutral
loop. The laws lead to the "weak chromatic group" of gain graphs, which is the
universal domain for weak chromatic functions. We find expressions, valid in
that group, for a gain graph in terms of minors without neutral-gain edges, or
with added complete neutral-gain subgraphs, that generalize the expression of
an ordinary chromatic polynomial in terms of monomials or falling factorials.
These expressions imply relations for chromatic functions of gain graphs.
We apply our relations to some special integral gain graphs including those
that correspond to the Shi, Linial, and Catalan arrangements, thereby obtaining
new evaluations of and new ways to calculate the zero-free chromatic polynomial
and the integral and modular chromatic functions of these gain graphs, hence
the characteristic polynomials and hypercubical lattice-point counting
functions of the arrangements. We also calculate the total chromatic polynomial
of any gain graph and especially of the Catalan, Shi, and Linial gain graphs.Comment: 31 page
Lattice Points in Orthotopes and a Huge Polynomial Tutte Invariant of Weighted Gain Graphs
A gain graph is a graph whose edges are orientably labelled from a group. A
weighted gain graph is a gain graph with vertex weights from an abelian
semigroup, where the gain group is lattice ordered and acts on the weight
semigroup. For weighted gain graphs we establish basic properties and we
present general dichromatic and forest-expansion polynomials that are Tutte
invariants (they satisfy Tutte's deletion-contraction and multiplicative
identities). Our dichromatic polynomial includes the classical graph one by
Tutte, Zaslavsky's two for gain graphs, Noble and Welsh's for graphs with
positive integer weights, and that of rooted integral gain graphs by Forge and
Zaslavsky. It is not a universal Tutte invariant of weighted gain graphs; that
remains to be found.
An evaluation of one example of our polynomial counts proper list colorations
of the gain graph from a color set with a gain-group action. When the gain
group is Z^d, the lists are order ideals in the integer lattice Z^d, and there
are specified upper bounds on the colors, then there is a formula for the
number of bounded proper colorations that is a piecewise polynomial function of
the upper bounds, of degree nd where n is the order of the graph.
This example leads to graph-theoretical formulas for the number of integer
lattice points in an orthotope but outside a finite number of affinographic
hyperplanes, and for the number of n x d integral matrices that lie between two
specified matrices but not in any of certain subspaces defined by simple row
equations.Comment: 32 pp. Submitted in 2007, extensive revisions in 2013 (!). V3: Added
references, clarified examples. 35 p
Molecular and functional characterization of gap junctions in the avian inner ear.
To analyze the fundamental role of gap junctions in the vertebrate inner ear, we examined molecular and functional characteristics of gap junctional communication (GJC) in the auditory and vestibular system of the chicken. By screening inner ear tissues for connexin isoforms using degenerate reverse transcription-PCR, we identified, in addition to chicken Cx43 (cCx43) and the inner-ear-specific cCx30, an as yet uncharacterized connexin predicted to be the ortholog of the mammalian Cx26. In situ hybridization indicated that cCx30 and cCx26 transcripts were both widely expressed in the cochlear duct and utricle in an overlapping pattern, suggesting coexpression of these isoforms similar to that in the mammalian inner ear. Immunohistochemistry demonstrated that cCx43 was present in gap junctions connecting supporting cells of the basilar papilla, in which its immunofluorescence colocalized with that of cCx30. However, cCx43 was absent from supporting cell gap junctions of the utricular macula. This variation in the molecular composition of gap junction plaques coincided with differences in the functional properties of GJC between the auditory and vestibular sensory epithelia. Fluorescence recovery after photobleaching, adapted to examine the diffusion of calcein in inner ear explants, revealed asymmetric communication pathways among supporting cells in the basilar papilla but not in the utricular macula. This study supports the hypothesis that the coexpression of Cx26/Cx30 is unique to gap junctions in the vertebrate inner ear. Furthermore, it demonstrates asymmetric GJC within the supporting cell population of the auditory sensory epithelium, which might mediate potassium cycling and/or intercellular signaling
- …
