335 research outputs found

    Square vortex lattice at anomalously low magnetic fields in electron-doped Nd1.85_{1.85}Ce0.15_{0.15}CuO4_{4}

    Full text link
    We report here on the first direct observations of the vortex lattice in the bulk of electron-doped Nd1.85_{1.85}Ce0.15_{0.15}CuO4_{4} single crystals. Using small angle neutron scattering, we have observed a square vortex lattice with the nearest-neighbors oriented at 45∘^{\circ} from the Cu-O bond direction, which is consistent with theories based on the d-wave superconducting gap. However, the square symmetry persists down to unusually low magnetic fields. Moreover, the diffracted intensity from the vortex lattice is found to decrease rapidly with increasing magnetic field.Comment: 4 pages, 4 Figures, accepted for publication in Phys. Rev. Let

    Triple trouble for XZ Tau : deep imaging with the Jansky Very Large Array

    Get PDF
    DF gratefully acknowledges support from STFC grant ST/J001422/1. RJI acknowledges support in the form of ERC Advanced Investigator programme, cosmicism. EI acknowledges funding from CONICYT/FONDECYT postdoctoral project no.: 3130504.We present new observations of the XZ Tau system made at high angular resolution (55 mas) with the Karl G. Jansky Very Large Array (VLA) at a wavelength of 7 mm. Observations of XZ Tau made with the VLA in 2004 appeared to show a triple-star system, with XZ Tau A resolved into two sources, XZ Tau A and XZ Tau C. The angular separation of XZ Tau A and C (0.09 arcsec) suggested a projected orbital separation of around 13 au with a possible orbital period of around 40 yr. Our follow-up observations were obtained approximately 8 yr later, a fifth of this putative orbital period, and should therefore allow us to constrain the orbital parameters of XZ Tau C, and evaluate the possibility that a recent periastron passage of C coincided with the launch of extended optical outflows from XZ Tau A. Despite improved sensitivity and resolution, as compared with the 2004 observations, we find no evidence of XZ Tau C in our data. Components A and B are detected with a signal-to-noise ratio greater than 10; their orbital motions are consistent with previous studies of the system, although the emission from XZ Tau A appears to be weaker. Three possible interpretations are offered: either XZ Tau C is transiting XZ Tau A, which is broadly consistent with the periastron passage hypothesis, or the emission seen in 2004 was that of a transient, or XZ Tau C does not exist. A fourth interpretation, that XZ Tau C was ejected from the system, is dismissed due to the lack of angular momentum redistribution in the orbits of XZ Tau A and XZ Tau B that would result from such an event. Transients are rare but cannot be ruled out in a T Tauri system known to exhibit variable behaviour. Our observations are insufficient to distinguish between the remaining possibilities, at least not until we obtain further VLA observations at a sufficiently later time. A further non-detection would allow us to reject the transit hypothesis, and the periastron passage of XZ Tau C as agent of XZ Tau A's outflows.Publisher PDFPeer reviewe

    A small angle neutron scattering study of the vortex matter in La{2-x}Sr{x}CuO{4} (x=0.17)

    Full text link
    The magnetic phase diagram of slightly overdoped La{2-x}Sr{x}CuO{4} (x=0.17) is characterised by a field-induced hexagonal to square transition of the vortex lattice at low fields (~0.4 Tesla) [R. Gilardi et al., Phys. Rev. Lett. 88, 217003 (2002)]. Here we report on a small angle neutron scattering study of the vortex lattice at higher fields, that reveals no further change of the coordination of the square vortex lattice up to 10.5 Tesla applied perpendicular to the CuO2 planes. Moreover, it is found that the diffraction signal disappears at temperatures well below Tc, due to the melting of the vortex lattice.Comment: 3 pages, 2 figures. Presented at the New3SC-4 meeting, San Diego, Jan. 16-21 2003; to be published in Int. J. Mod. Phys.

    Exploring the fragile antiferromagnetic superconducting phase in CeCoIn5

    Get PDF
    CeCoIn5 is a heavy fermion Type-II superconductor which exhibits clear indications of Pauli-limited superconductivity. A variety of measurements give evidence for a transition at high magnetic fields inside the superconducting state, when the field is applied either parallel to or perpendicular to the c axis. When the field is perpendicular to the c axis, antiferromagnetic order is observed on the high-field side of the transition, with a magnetic wavevector of (q q 0.5), where q = 0.44 reciprocal lattice units. We show that this order remains as the magnetic field is rotated out of the basal plane, but the associated moment eventually disappears above 17 degrees, indicating that the anomalies seen with the field parallel to the c axis are not related to this magnetic order. We discuss the implications of this finding.Comment: Accepted Physical Review Letters, September 2010. 4 pages, 4 figure

    High magnetic field studies of the Vortex Lattice structure in YBa2Cu3O7

    Full text link
    We report on small angle neutron scattering measurements of the vortex lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum field of 11~T up to 16.7~T with the field applied parallel to the c axis. This is the first microscopic study of vortex matter in this region of the superconducting phase. We find the high field VL displays a rhombic structure, with a field-dependent coordination that passes through a square configuration, and which does not lock-in to a field-independent structure. The VL pinning reduces with increasing temperature, but is seen to affect the VL correlation length even above the irreversibility temperature of the lattice structure. At high field and temperature we observe a melting transition, which appears to be first order, with no detectable signal from a vortex liquid above the transition

    Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid

    Full text link
    Sub-Nyquist time frequency packing technique was demonstrated for the first time in a super channel field trial transmission over long-haul distances. The technique allows a limited spectral occupancy even with low order modulation formats. The transmission was successfully performed on a deployed Australian link between Sydney and Melbourne which included 995 km of uncompensated SMF with coexistent traffic. 40 and 100 Gb/s co-propagating channels were transmitted together with the super-channel in a 50 GHz ITU-T grid without additional penalty. The super-channel consisted of eight sub-channels with low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness and reduced complexity with respect to higher order formats. At the receiver side, coherent detection was used together with iterative maximum-a-posteriori (MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully transmitted between Sydney and Melbourne within four 50GHz WSS channels (200 GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8 dB, comparable to the OSNR of the installed 100 Gb/s channels. The system reliability was proven through long term measurements. In addition, by closing the link in a loop back configuration, a potential SE*d product of 9254 bit/s/Hz*km was achieved

    Skyrmion Lattice in a Chiral Magnet

    Full text link
    Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states

    Fermi surface and order parameter driven vortex lattice structure transitions in twin-free YBa2Cu3O7

    Get PDF
    We report on small-angle neutron scattering studies of the intrinsic vortex lattice (VL) structure in detwinned YBa2Cu3O7 at 2 K, and in fields up to 10.8 T. Because of the suppressed pinning to twin-domain boundaries, a new distorted hexagonal VL structure phase is stabilized at intermediate fields. It is separated from a low-field hexagonal phase of different orientation and distortion by a first-order transition at 2.0(2) T that is probably driven by Fermi surface effects. We argue that another first-order transition at 6.7(2) T, into a rhombic structure with a distortion of opposite sign, marks a crossover from a regime where Fermi surface anisotropy is dominant, to one where the VL structure and distortion is controlled by the order-parameter anisotropy.Comment: 4 pages, 3 figures (2 color), minor change
    • …
    corecore