39 research outputs found

    Revealing nascent proteomics in signaling pathways and cell differentiation.

    Get PDF
    Regulation of gene expression at the level of protein synthesis is a crucial element in driving how the genetic landscape is expressed. However, we are still limited in technologies that can quantitatively capture the immediate proteomic changes that allow cells to respond to specific stimuli. Here, we present a method to capture and identify nascent proteomes in situ across different cell types without disturbing normal growth conditions, using O-propargyl-puromycin (OPP). Cell-permeable OPP rapidly labels nascent elongating polypeptides, which are subsequently conjugated to biotin-azide, using click chemistry, and captured with streptavidin beads, followed by digestion and analysis, using liquid chromatography-tandem mass spectrometry. Our technique of OPP-mediated identification (OPP-ID) allows detection of widespread proteomic changes within a short 2-hour pulse of OPP. We illustrate our technique by recapitulating alterations of proteomic networks induced by a potent mammalian target of rapamycin inhibitor, MLN128. In addition, by employing OPP-ID, we identify more than 2,100 proteins and uncover distinct protein networks underlying early erythroid progenitor and differentiation states not amenable to alternative approaches such as amino acid analog labeling. We present OPP-ID as a method to quantitatively identify nascent proteomes across an array of biological contexts while preserving the subtleties directing signaling in the native cellular environment

    Human Population Density and Extinction Risk in the World's Carnivores

    Get PDF
    Understanding why some species are at high risk of extinction, while others remain relatively safe, is central to the development of a predictive conservation science. Recent studies have shown that a species' extinction risk may be determined by two types of factors: intrinsic biological traits and exposure to external anthropogenic threats. However, little is known about the relative and interacting effects of intrinsic and external variables on extinction risk. Using phylogenetic comparative methods, we show that extinction risk in the mammal order Carnivora is predicted more strongly by biology than exposure to high-density human populations. However, biology interacts with human population density to determine extinction risk: biological traits explain 80% of variation in risk for carnivore species with high levels of exposure to human populations, compared to 45% for carnivores generally. The results suggest that biology will become a more critical determinant of risk as human populations expand. We demonstrate how a model predicting extinction risk from biology can be combined with projected human population density to identify species likely to move most rapidly towards extinction by the year 2030. African viverrid species are particularly likely to become threatened, even though most are currently considered relatively safe. We suggest that a preemptive approach to species conservation is needed to identify and protect species that may not be threatened at present but may become so in the near future
    corecore