24,382 research outputs found

    Note on the derivative of the hyperbolic cotangent

    Get PDF
    In a letter to Nature (Ford G W and O'Connell R F 1996 Nature 380 113) we presented a formula for the derivative of the hyperbolic cotangent that differs from the standard one in the literature by an additional term proportional to the Dirac delta function. Since our letter was necessarily brief, shortly after its appearance we prepared a more extensive unpublished note giving a detailed explanation of our argument. Since this note has been referenced in a recent article (Estrada R and Fulling S A 2002 J. Phys. A: Math. Gen. 35 3079) we think it appropriate that it now appear in print. We have made no alteration to the original note

    Does the Third Law of Thermodynamics hold in the Quantum Regime?

    Get PDF
    The first in a long series of papers by John T. Lewis, G. W. Ford and the present author, considered the problem of the most general coupling of a quantum particle to a linear passive heat bath, in the course of which they derived an exact formula for the free energy of an oscillator coupled to a heat bath in thermal equilibrium at temperature T. This formula, and its later extension to three dimensions to incorporate a magnetic field, has proved to be invaluable in analyzing problems in quantum thermodynamics. Here, we address the question raised in our title viz. Nernst's third law of thermodynamics

    Relativistic Elastic Differential Cross Sections for Equal Mass Nuclei

    Get PDF
    The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann-Schwinger equation with the first order optical potential that was employed in the calculatio

    The Effects of Stress Tensor Fluctuations upon Focusing

    Full text link
    We treat the gravitational effects of quantum stress tensor fluctuations. An operational approach is adopted in which these fluctuations produce fluctuations in the focusing of a bundle of geodesics. This can be calculated explicitly using the Raychaudhuri equation as a Langevin equation. The physical manifestation of these fluctuations are angular blurring and luminosity fluctuations of the images of distant sources. We give explicit results for the case of a scalar field on a flat background in a thermal state.Comment: 26 pages, 1 figure, new material added in Sect. III and in Appendices B and

    Decoherence in Phase Space

    Full text link
    Much of the discussion of decoherence has been in terms of a particle moving in one dimension that is placed in an initial superposition state (a Schr\"{o}dinger "cat" state) corresponding to two widely separated wave packets. Decoherence refers to the destruction of the interference term in the quantum probability function. Here, we stress that a quantitative measure of decoherence depends not only on the specific system being studied but also on whether one is considering coordinate, momentum or phase space. We show that this is best illustrated by considering Wigner phase space where the measure is again different. Analytic results for the time development of the Wigner distribution function for a two-Gaussian Schrodinger "cat" state have been obtained in the high-temperature limit (where decoherence can occur even for negligible dissipation) which facilitates a simple demonstration of our remarks.Comment: in press in Laser Phys.13(2003

    Gravitational vacuum polarization III: Energy conditions in the (1+1) Schwarzschild spacetime

    Full text link
    Building on a pair of earlier papers, I investigate the various point-wise and averaged energy conditions for the quantum stress-energy tensor corresponding to a conformally-coupled massless scalar field in the in the (1+1)-dimensional Schwarzschild spacetime. Because the stress-energy tensors are analytically known, I can get exact results for the Hartle--Hawking, Boulware, and Unruh vacua. This exactly solvable model serves as a useful sanity check on my (3+1)-dimensional investigations wherein I had to resort to a mixture of analytic approximations and numerical techniques. Key results in (1+1) dimensions are: (1) NEC is satisfied outside the event horizon for the Hartle--Hawking vacuum, and violated for the Boulware and Unruh vacua. (2) DEC is violated everywhere in the spacetime (for any quantum state, not just the standard vacuum states).Comment: 7 pages, ReV_Te

    Measured quantum probability distribution functions for Brownian motion

    Full text link
    The quantum analog of the joint probability distributions describing a classical stochastic process is introduced. A prescription is given for constructing the quantum distribution associated with a sequence of measurements. For the case of quantum Brownian motion this prescription is illustrated with a number of explicit examples. In particular it is shown how the prescription can be extended in the form of a general formula for the Wigner function of a Brownian particle entangled with a heat bath.Comment: Phys. Rev. A, in pres

    Use of mathematical derivatives (time-domain differentiation) on chromatographic data to enhance the detection and quantification of an unknown 'rider' peak

    Get PDF
    Two samples of an anticancer prodrug, AQ4N, were submitted for HPLC assay and showed an unidentified impurity that eluted as a 'rider' on the tail of the main peak. Mathematical derivatization of the chromatograms offered several advantages over conventional skimmed integration. A combination of the second derivative amplitude and simple linear regression gave a novel method for estimating the true peak area of the impurity peak. All the calculation steps were carried out using a widely available spreadsheet program. (C) 2003 Elsevier B.V. All rights reserved

    Restrictions on Negative Energy Density in Flat Spacetime

    Full text link
    In a previous paper, a bound on the negative energy density seen by an arbitrary inertial observer was derived for the free massless, quantized scalar field in four-dimensional Minkowski spacetime. This constraint has the form of an uncertainty principle-type limitation on the magnitude and duration of the negative energy density. That result was obtained after a somewhat complicated analysis. The goal of the current paper is to present a much simpler method for obtaining such constraints. Similar ``quantum inequality'' bounds on negative energy density are derived for the electromagnetic field, and for the massive scalar field in both two and four-dimensional Minkowski spacetime.Comment: 17 pages, including two figures, uses epsf, minor revisions in the Introduction, conclusions unchange

    Detection of negative energy: 4-dimensional examples

    Get PDF
    We study the response of switched particle detectors to static negative energy densities and negative energy fluxes. It is demonstrated how the switching leads to excitation even in the vacuum and how negative energy can lead to a suppression of this excitation. We obtain quantum inequalities on the detection similar to those obtained for the energy density by Ford and co-workers and in an `operational' context by Helfer. We revisit the question `Is there a quantum equivalence principle?' in terms of our model. Finally, we briefly address the issue of negative energy and the second law of thermodynamics.Comment: 10 pages, 7 figure
    • …
    corecore