894 research outputs found

    Permanent monitoring of thin structures with low-cost devices

    Get PDF
    Recently, structural monitoring technology invested in methodologies that give direct information on structures' stress state. Optic fibers, strain gauges, pressure cells give real-time data on the stress condition of a structural element, often determining the area where peak stresses have been reached, with a clear advantage over other less direct monitoring methodologies, such as, e.g., the use of accelerometers and inverse analysis to estimate internal forces. In addition, stresses can be recorded in a data log for analysis after a loading event, as well as for taking into account the lifelong stress state of the structure. Beams and columns of a reinforced concrete frame can be effectively monitored for flexural loads. Differently, thin shells are most of their lifespan under membrane regime, and, when properly designed, they rarely move to the bending regime. Our proposal is to monitor the stress in thin structures by small-sized low- cost devices able to record the stress history at key locations, sending alerts when necessary, with the aim of ensuring safety against the risk of collapse, or simply to perform maintenance/repairing activities. Such devices are realized with cheap off-the-shelf electronics and traditional strain gauges. The application examples are given as laboratory tests performed on a reinforced concrete plate, a masonry panel, and a steel beam. Results shows that the permanent monitoring control of stresses can be conveniently carried out on new structures using low-cost devices of the type we designed and realized in-house

    Sildenafil Prevents Endothelial Dysfunction Induced by Ischemia and Reperfusion via Opening of Adenosine Triphosphate–Sensitive Potassium Channels

    Get PDF
    Background— Animal studies have demonstrated that administration of sildenafil can limit myocardial damage induced by prolonged ischemia, an effect that appears to be mediated by opening of adenosine triphosphate–sensitive potassium (K ATP ) channels. No study has investigated whether sildenafil can also prevent the impairment in endothelium-dependent vasodilatation induced by ischemia-reperfusion (IR) in humans. Methods and Results— In a double-blind, placebo-controlled, crossover design, 10 healthy male volunteers (25 to 45 years old) were randomized to oral sildenafil (50 mg) or placebo. Two hours later, endothelium-dependent, flow-mediated dilatation (FMD) of the radial artery was measured before and after IR (15 minutes of ischemia at the level of the brachial artery followed by 15 minutes of reperfusion). Seven days later, subjects received the other treatment (ie, placebo or sildenafil) and underwent the same protocol. Pre-IR radial artery diameter and FMD, as well as baseline radial artery diameter after IR, were similar between visits ( P =NS). After placebo administration, IR significantly blunted FMD (before IR: 7.9±1.1%; after IR: 1.2±0.7%, P <0.01). Importantly, sildenafil limited this impairment in endothelium-dependent vasodilatation (before IR: 7.0±0.9%; after IR: 6.2±1.1%, P =NS; P <0.01 compared with placebo). In a separate protocol, this protective effect was completely prevented by previous administration of the sulfonylurea glibenclamide (glyburide, 5 mg), a blocker of K ATP channels (n=7; FMD before IR: 10.3±1.5%; after IR: 1.3±1.4%, P <0.05). Conclusions— In humans, oral sildenafil induces potent protection against IR-induced endothelial dysfunction through opening of K ATP channels. Further studies are needed to test the potential clinical implications of this finding

    IoT sensors for modern structural health monitoring. A new frontier

    Get PDF
    The problem of determining the structural safety level of buildings and civil engineering infrastructures (CEIs) is raising growing concern worldwide. Most of the reinforced concrete constructions have a design life not greater than 100 years, and today it is necessary to face the problem of assessing their level of safety and structural integrity. Such problem is even more pressing when a construction is subjected to extreme environmental conditions. The long-term goal of this study is the realization of wireless low- cost devices, and a data management software, for the structural health monitoring of buildings and CEIs, with remotely controlled sensors embedded in, or installed on, the structural elements, to measure stresses together with accelerations. Once equipped with such system, each construction can become part of the Internet of Things, permitting users and authorities to be alerted in case structural safety is diminished or compromised. A crucial aspect is the unaltered preservation of measurement data over time, which cannot just rely on third parties, and for which it is necessary the exploitation of suitable data-protection technologies. This study have been carried out by experimental testing and validation, both in lab and on site, of the monitoring devices designed and realized. Results show that it is possible to realize low-cost monitoring systems, and related installation techniques, for integration in every new or existing buildings and CEIs

    Interplay between IL-10, IFN-γ, IL-17A and PD-1 Expressing EBNA1-Specific CD4+ and CD8+ T Cell Responses in the Etiologic Pathway to Endemic Burkitt Lymphoma

    Full text link
    Children diagnosed with endemic Burkitt lymphoma (eBL) are deficient in interferon-γ (IFN-γ) responses to Epstein–Barr Nuclear Antigen1 (EBNA1), the viral protein that defines the latency I pattern in this B cell tumor. However, the contributions of immune-regulatory cytokines and phenotypes of the EBNA1-specific T cells have not been characterized for eBL. Using a bespoke flow cytometry assay we measured intracellular IFN-γ, IL-10, IL-17A expression and phenotyped CD4+ and CD8+ T cell effector memory subsets specific to EBNA1 for eBL patients compared to two groups of healthy children with divergent malaria exposures. In response to EBNA1 and a malaria antigen (PfSEA-1A), the three study groups exhibited strikingly different cytokine expression and T cell memory profiles. EBNA1-specific IFN-γ-producing CD4+ T cell response rates were lowest in eBL (40%) compared to children with high malaria (84%) and low malaria (66%) exposures (p < 0.0001 and p = 0.0004, respectively). However, eBL patients did not differ in CD8+ T cell response rates or the magnitude of IFN-γ expression. In contrast, eBL children were more likely to have EBNA1-specific CD4+ T cells expressing IL-10, and less likely to have polyfunctional IFN-γ+IL-10+ CD4+ T cells (p = 0.02). They were also more likely to have IFN-γ+IL-17A+, IFN-γ+ and IL-17A+ CD8+ T cell subsets compared to healthy children. Cytokine-producing T cell subsets were predominantly CD45RA+CCR7+ TNAIVE-LIKE cells, yet PD-1, a marker of persistent activation/exhaustion, was more highly expressed by the central memory (TCM) and effector memory (TEM) T cell subsets. In summary, our study suggests that IL-10 mediated immune regulation and depletion of IFN-γ+ EBNA1-specific CD4+ T cells are complementary mechanisms that contribute to impaired T cell cytotoxicity in eBL pathogenesis

    Large genomic aberrations detected by SNP array are independent prognosticators of a shorter time to first treatment in chronic lymphocytic leukemia patients with normal FISH

    Get PDF
    Background Genomic complexity can predict the clinical course of patients affected by chronic lymphocytic leukemia (CLL) with a normal FISH. However, large studies are still lacking. Here, we analyzed a large series of CLL patients and also carried out the so far largest comparison of FISH versus single-nucleotide polymorphism (SNP) array in this disease. Patients and methods SNP-array data were derived from a previously reported dataset. Results Seventy-seven of 329 CLL patients (23%) presented with a normal FISH. At least one large (>5 Mb) genomic aberration was detected by SNP array in 17 of 77 patients (22%); this finding significantly affected TTT. There was no correlation with the presence of TP53 mutations. In multivariate analysis, including age, Binet stage, IGHV genes mutational status and large genomic lesion, the latter three factors emerged as independent prognosticators. The concordance between FISH and SNP array varied between 84 and 97%, depending on the specific genomic locus investigated. Conclusions SNP array detected additional large genomic aberrations not covered by the standard FISH panel predicting the outcome of CLL patient

    The SF3B1 inhibitor spliceostatin A (SSA) elicits apoptosis in chronic lymphocytic leukemia cells through downregulation of Mcl-1

    No full text
    The pro-survival Bcl-2 family member Mcl-1 is expressed in chronic lymphocytic leukemia (CLL), with high expression correlated with progressive disease. The spliceosome inhibitor spliceostatin A (SSA), is known to regulate Mcl-1 and so here we assessed the ability of SSA to elicit apoptosis in CLL. SSA induced apoptosis of CLL cells at low nanomolar concentrations in a dose- and time-dependent manner, but independently of SF3B1 mutational status, IGHV status and CD38 or ZAP70 expression. However, normal B and T cells were less sensitive than CLL cells (P=0.006 and P&lt;0.001, respectively). SSA altered the splicing of anti-apoptotic MCL-1L to MCL-1s in CLL cells coincident with induction of apoptosis. Overexpression studies in Ramos cells suggested Mcl-1 was important for SSA-induced killing since its expression inversely correlated with apoptosis (P=0.001). IL4 and CD40L, present in patient lymph nodes, are known to protect tumor cells from apoptosis and significantly inhibited SSA, ABT-263 and ABT-199 induced killing following administration to CLL cells (P=0.008). However, by combining SSA with the Bcl-2/Bcl-xL antagonists ABT-263 or ABT-199, we were able to overcome this pro-survival effect. We conclude that SSA combined with Bcl-2/Bcl-xL antagonists may have therapeutic utility for CL

    An integrated Bayesian analysis of LOH and copy number data

    Get PDF
    Background: Cancer and other disorders are due to genomic lesions. SNP-microarrays are able to measure simultaneously both genotype and copy number (CN) at several Single Nucleotide Polymorphisms (SNPs) along the genome. CN is defined as the number of DNA copies, and the normal is two, since we have two copies of each chromosome. The genotype of a SNP is the status given by the nucleotides (alleles) which are present on the two copies of DNA. It is defined homozygous or heterozygous if the two alleles are the same or if they differ, respectively. Loss of heterozygosity (LOH) is the loss of the heterozygous status due to genomic events. Combining CN and LOH data, it is possible to better identify different types of genomic aberrations. For example, a long sequence of homozygous SNPs might be caused by either the physical loss of one copy or a uniparental disomy event (UPD), i.e. each SNP has two identical nucleotides both derived from only one parent. In this situation, the knowledge of the CN can help in distinguishing between these two events. Results: To better identify genomic aberrations, we propose a method (called gBPCR) which infers the type of aberration occurred, taking into account all the possible influence in the microarray detection of the homozygosity status of the SNPs, resulting from an altered CN level. Namely, we model the distributions of the detected genotype, given a specific genomic alteration and we estimate the parameters involved on public referenc
    corecore