85 research outputs found

    A drag coefficient for application to the WLTP driving cycle

    Get PDF
    The aerodynamic drag characteristics of a passenger car have, typically, been defined by a single parameter: the drag coefficient at a yaw angle of 0Β°. Although this has been acceptable in the past, it does not provide an accurate measure of the effect of aerodynamic drag on fuel consumption because the important influence of the wind has been excluded. The result of using drag coefficients at a yaw angle of 0Β° produces an underprediction of the aerodynamic component of fuel consumption that does not reflect the on-road conditions. An alternative measure of the aerodynamic drag should take into account the effect of non-zero yaw angles, and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, such as for a driving cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed. An effective drag coefficient is determined with this approach for a range of cars using the proposed test cycle for the Worldwide Harmonised Light Vehicle Test Procedure, WLTP. The wind input acting on the car has been updated for this paper using recent meteorological data and an understanding of the effect of a shear flow on the drag loading obtained from a computational fluid dynamics study. In order to determine the different mean wind velocities acting on the car, a terrain-related wind profile has also been applied to the various phases of the driving cycle. An overall drag coefficient is derived from the work done over the full cycle. This cycle-averaged drag coefficient is shown to be significantly higher than the nominal drag coefficient at a yaw angle of 0Β°

    The Importance of Computing Education Research

    Get PDF
    Interest in computer science is growing. As a result, computer science (CS) and related departments are experiencing an explosive increase in undergraduate enrollments and unprecedented demand from other disciplines for learning computing. According to the 2014 CRA Taulbee Survey, the number of undergraduates declaring a computing major at Ph.D. granting departments in the US has increased 60% from 2011-2014 and the number of degrees granted has increased by 34% from 2008-2013. However, this growth is not limited to higher education. New York City, San Francisco and Oakland public schools will soon be offering computer science to all students at all schools from preschool to 12th grade, although it will be an elective for high school students. This unprecedented demand means that CS departments are likely to teach not only more students in the coming decades, but more diverse students, with more varied backgrounds, motivations, preparations, and abilities. This growth is an unparalleled opportunity to expand the reach of computing education. However, this growth is also a unique research challenge, as we know very little about how best to teach our current students, let alone the students soon to arrive. The burgeoning field of Computing Education Research (CER) is positioned to address this challenge by answering research questions such as, how should we teach computer science, from programming to advanced principles, to a broader and more diverse audience? We argue that computer science departments should lead the way in establishing CER as a foundational research area of computer science, discovering the best ways to teach CS, and inventing the best technologies with which to teach it. This white paper provides a snapshot of the current state of CER and makes actionable recommendations for academic leaders to grow CER as a successful research area in their departments.Comment: A Computing Community Consortium (CCC) white paper, 12 page

    Guest Editors\u27 Introduction: Best of RESPECT, Part 2

    Get PDF
    The guest editors introduce best papers on broadening participation in computing from the RESPECT\u2715 conference. The five articles presented here are part two of a two-part series representing research on broadening participation in computing. These articles study participation in intersectional ways, through the perceptions and experiences of African-American middle school girls, the sense of belonging in computing for LGBTQ students, the impact of a STEM scholarship and community development program for low-income and first-generation college students, a leadership development program, and how African-American women individually take leadership to enable their success in computing

    Koinonia

    Get PDF
    The ProfessionFaculty and Student Development Staff as Partners in Education, Barry Loy Is it Okay to Struggle as Student Development Professionals?, Terry Williams Conference SpotlightLeading Ladies: Transformative Biblical Images for Women\u27s Leadership, Jeanne Porter Mi Abuelito, Tom Neven Campus EventsQuestions Without Answers, JR Kerr Book ReviewsLet Your Life Speak, reviewed by Dana Forbes Mountains and Passes, reviewed by Jeff Doyle FeaturesThe President\u27s Corner Editor\u27s Diskhttps://pillars.taylor.edu/acsd_koinonia/1009/thumbnail.jp

    The Grizzly, September 26, 1995

    Get PDF
    Ursinus Improves in National Rankings β€’ Racism in Everywhere β€’ The Dawn of a New S.T.A.R. β€’ Royersford Teachers Strike β€’ Restaurant Night is Back! β€’ Stories from Abroad β€’ Help, I\u27m an E-mail Addict! β€’ Political Parties, Presidents, and Colin Powell β€’ Writing Off Old Men\u27s? β€’ Way to go, Collegeville! β€’ Letters to the Editor β€’ Spirit of Life Ensemble to Perform β€’ Tobin Display at Berman β€’ Are Wismer\u27s Grades Slipping? β€’ Hillel Trip a Success β€’ Celebrating Hispanic Heritage β€’ What\u27s Going on at Ursinus College? β€’ U.S.G.A. Minutes β€’ C.A.B. Minutes β€’ Conserve, Conserve, Conserve! What You Can do to Save Energy and the Earth β€’ Soccer Team Splits β€’ Field Hockey Team Wins Fourth Straight β€’ Runners Compete β€’ Football Team Not Offensive in Loss β€’ Volleyball Team Nets Third Winhttps://digitalcommons.ursinus.edu/grizzlynews/1363/thumbnail.jp

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    Synchronized cycles of bacterial lysis for in vivo delivery

    Get PDF
    The pervasive view of bacteria as strictly pathogenic has given way to an ppreciation of the widespread prevalence of beneficial microbes within the human body. Given this milieu, it is perhaps inevitable that some bacteria would evolve to preferentially grow in environments that harbor disease and thus provide a natural platform for the development of engineered therapies. Such therapies could benefit from bacteria that are programmed to limit bacterial growth while continually producing and releasing cytotoxic agents in situ. Here, we engineer a clinically relevant bacterium to lyse synchronously at a threshold population density and to release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria reseed the growing population, thus leading to pulsatile delivery cycles. We use microfluidic devices to characterize the engineered lysis strain and we demonstrate its potential as a drug deliver platform via co-culture with human cancer cells in vitro. As a proof of principle, we track the bacterial population dynamics in ectopic syngeneic colorectal tumors in mice. The lysis strain exhibits pulsatile population dynamics in vivo, with mean bacterial luminescence that remained two orders of magnitude lower than an unmodified strain. Finally, guided by previous findings that certain bacteria can enhance the efficacy of standard therapies, we orally administer the lysis strain, alone or in combination with a clinical chemotherapeutic, to a syngeneic transplantation model of hepatic colorectal metastases. We find that the combination of both circuit-engineered bacteria and chemotherapy leads to a notable reduction of tumor activity along with a marked survival benefit over either therapy alone. Our approach establishes a methodology for leveraging the tools of synthetic biology to exploit the natural propensity for certain bacteria to colonize disease sites.National Institute of General Medical Sciences (U.S.) (GM069811)San Diego Center for Systems Biology (P50 GM085764)National Cancer Institute (U.S.). Swanson Biotechnology Center (Koch Institute Support Grant (P30-CA14051))National Institute of Environmental Health Sciences (Core Center Grant (P30- ES002109))National Institutes of Health (U.S.) (NIH Pathway to Independence Award NIH (K99 CA197649-01))Misrock Postdoctoral fellowshipNational Defense Science and Engineering Graduate (NDSEG) Fellowshi

    Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project

    Get PDF
    The human major histocompatibility complex (MHC) is contained within about 4Β Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine
    • …
    corecore