106 research outputs found

    Neutrino masses in the Lepton Number Violating MSSM

    Full text link
    We consider the most general supersymmetric model with minimal particle content and an additional discrete Z_3 symmetry (instead of R-parity), which allows lepton number violating terms and results in non-zero Majorana neutrino masses. We investigate whether the currently measured values for lepton masses and mixing can be reproduced. We set up a framework in which Lagrangian parameters can be initialised without recourse to assumptions concerning trilinear or bilinear superpotential terms, CP-conservation or intergenerational mixing and analyse in detail the one loop corrections to the neutrino masses. We present scenarios in which the experimental data are reproduced and show the effect varying lepton number violating couplings has on the predicted atmospheric and solar mass^2 differences. We find that with bilinear lepton number violating couplings in the superpotential of the order 1 MeV the atmospheric mass scale can be reproduced. Certain trilinear superpotential couplings, usually, of the order of the electron Yukawa coupling can give rise to either atmospheric or solar mass scales and bilinear supersymmetry breaking terms of the order 0.1 GeV^2 can set the solar mass scale. Further details of our calculation, Lagrangian, Feynman rules and relevant generic loop diagrams, are presented in three Appendices.Comment: 48 pages, 7 figures, v2 references added, typos corrected, published versio

    Quantum Hall effect anomaly and collective modes in the magnetic-field-induced spin-density-wave phases of quasi-one-dimensional conductors

    Full text link
    We study the collective modes in the magnetic-field-induced spin-density-wave (FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family. In phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly), the coexistence of two spin-density waves gives rise to additional collective modes besides the Goldstone modes due to spontaneous translation and rotation symmetry breaking. These modes strongly affect the charge and spin response functions. We discuss some experimental consequences for the Bechgaard salts.Comment: Final version (LaTex, 8 pages, no figure), to be published in Europhys. Let

    Critical Exponents of the Three Dimensional Random Field Ising Model

    Full text link
    The phase transition of the three--dimensional random field Ising model with a discrete (±h\pm h) field distribution is investigated by extensive Monte Carlo simulations. Values of the critical exponents for the correlation length, specific heat, susceptibility, disconnected susceptibility and magnetization are determined simultaneously via finite size scaling. While the exponents for the magnetization and disconnected susceptibility are consistent with a first order transition, the specific heat appears to saturate indicating no latent heat. Sample to sample fluctuations of the susceptibilty are consistent with the droplet picture for the transition.Comment: Revtex, 10 pages + 4 figures included as Latex files and 1 in Postscrip

    A Study of Activated Processes in Soft Sphere Glass

    Full text link
    On the basis of long simulations of a binary mixture of soft spheres just below the glass transition, we make an exploratory study of the activated processes that contribute to the dynamics. We concentrate on statistical measures of the size of the activated processes.Comment: 17 pages, 9 postscript figures with epsf, uses harvmac.te

    Conformal Enhancement of Holographic Scaling in Black Hole Thermodynamics: A Near-Horizon Heat-Kernel Framework

    Full text link
    Standard thermodynamic treatments of quantum field theory in the presence of black-hole backgrounds reproduce the black hole entropy by usually specializing to the leading order of the heat-kernel or the high-temperature expansion. By contrast, this work develops a hybrid framework centered on geometric spectral asymptotics whereby these assumptions are shown to be unwarranted insofar as black hole thermodynamics is concerned. The approach--consisting of the concurrent use of near-horizon and heat-kernel asymptotic expansions--leads to a proof of the holographic scaling of the entropy as a universal feature driven by conformal quantum mechanics.Comment: 13 pages, JHEP style. Added section 3 in the new version and a few typos were correcte

    Open String Wavefunctions in Warped Compactifications

    Full text link
    We analyze the wavefunctions for open strings in warped compactifications, and compute the warped Kahler potential for the light modes of a probe D-brane. This analysis not only applies to the dynamics of D-branes in warped backgrounds, but also allows to deduce warping corrections to the closed string Kahler metrics via their couplings to open strings. We consider in particular the spectrum of D7-branes in warped Calabi-Yau orientifolds, which provide a string theory realizations of the Randall-Sundrum scenario. We find that certain background fluxes, necessary in the presence of warping, couple to the fermionic wavefunctions and qualitatively change their behavior. This modified dependence of the wavefunctions are needed for consistency with supersymmetry, though it is present in non-supersymmetric vacua as well. We discuss the deviations of our setup from the RS scenario and, as an application of our results, compute the warping corrections to Yukawa couplings in a simple model. Our analysis is performed both with and without the presence of D-brane world-volume flux, as well as for the case of backgrounds with varying dilaton.Comment: 52 pages, refs. added, minor correction

    The Little Hierarchy in Universal Extra Dimensions

    Get PDF
    In the standard model in universal extra dimensions (UED) the mass of the Higgs field is driven to the cutoff of the higher-dimensional theory. This re-introduces a small hierarchy since the compactification scale 1/R should not be smaller than the weak scale. In this paper we study possible solutions to this problem by considering five-dimensional theories where the Higgs field potential vanishes at tree level due to a global symmetry. We consider two avenues: a Little Higgs model and a Twin Higgs model. An obstacle for the embedding of these four-dimensional models in five dimensions is that their logarithmic sensitivity to the cutoff will result in linear divergences in the higher dimensional theory. We show that, despite the increased cutoff sensitivity of higher dimensional theories, it is possible to control the Higgs mass in these two scenarios. For the Little Higgs model studied, the phenomenology will be significantly different from the case of the standard model in UED. This is due to the fact that the compactification scale approximately coincides with the scale where the masses of the new states appear. For the case of the Twin Higgs model, the compactification scale may be considerably lower than the scale where the new states appear. If it is as low as allowed by current limits, it would be possible to experimentally observe the standard model Kaluza-Klein states as well as a new heavy quark. On the other hand, if the compactification scale is higher, then the phenomenology at colliders would coincide with the one for the standard model in UED.Comment: 25 pages, 2 figure

    Boundary States of c=1 and 3/2 Rational Conformal Field Theories

    Get PDF
    We study the boundary states for the rational points in the moduli spaces of c=1 conformal and c=3/2 superconformal field theories, including the isolated Ginsparg points. We use the orbifold and simple-current techniques to relate the boundary states of different theories and to obtain symmetry-breaking, non-Cardy boundary states. We show some interesting examples of fractional and twisted branes on orbifold spaces.Comment: Latex, 46 pages, 1 figur

    Mixed Wino Dark Matter: Consequences for Direct, Indirect and Collider Detection

    Full text link
    In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass unification, the predicted relic abundance of neutralinos usually exceeds the strict limits imposed by the WMAP collaboration. One way to obtain the correct relic abundance is to abandon gaugino mass universality and allow a mixed wino-bino lightest SUSY particle (LSP). The enhanced annihilation and scattering cross sections of mixed wino dark matter (MWDM) compared to bino dark matter lead to enhanced rates for direct dark matter detection, as well as for indirect detection at neutrino telescopes and for detection of dark matter annihilation products in the galactic halo. For collider experiments, MWDM leads to a reduced but significant mass gap between the lightest neutralinos so that chi_2^0 two-body decay modes are usually closed. This means that dilepton mass edges-- the starting point for cascade decay reconstruction at the CERN LHC-- should be accessible over almost all of parameter space. Measurement of the m_{\tz_2}-m_{\tz_1} mass gap at LHC plus various sparticle masses and cross sections as a function of beam polarization at the International Linear Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in the universe.Comment: 29 pages including 19 eps figure

    Gauge thresholds in the presence of oblique magnetic fluxes

    Full text link
    We compute the one-loop partition function and analyze the conditions for tadpole cancellation in type I theories compactified on tori in the presence of internal oblique magnetic fields. We check open - closed string channel duality and discuss the effect of T-duality. We address the issue of the quantum consistency of the toroidal model with stabilized moduli recently proposed by Antoniadis and Maillard (AM). We then pass to describe the computation of one-loop threshold corrections to the gauge couplings in models of this kind. Finally we briefly comment on coupling unification and dilaton stabilization in phenomenologically more viable modelsComment: 34 pages, 2 figures; references added, major changes to the discussion of the model proposed by Antoniadis and Maillar
    • …
    corecore