21 research outputs found

    X-ray studies of enzymes that interact with penicillins.

    Full text link
    The technique of X-ray diffraction has been successfully applied to enzymes associated with peptidoglycan biosynthesis. The technique has taught us a great deal about the structures and catalytic mechanisms of penicillin-binding proteins and beta-lactamases. An insight into the structural basis for antibiotic resistance is given

    Crystal structure of Enterobacter cloacae 908R class C beta-lactamase bound to iodo-acetamido-phenyl boronic acid, a transition-state analogue

    Get PDF
    peer reviewedThe structures of the, class C beta-lactamase from Enterobacter cloacae 908R alone and in complex with a baronic acid transition-state analogue were determined by X-ray crystallography at 2.1 and 2.3 Angstrom, respectively. The structure of the enzyme resembles those of other class C beta-lactamases. The structure of the. complex with the transition-state analogue, iodo-acetamido-phenyl boronic acid, shows that the inhibitor is covalently, bound to the active-site serine (Ser64). Binding of the inhibitor within the active site is compared with previously determined structures of complexes with other class C enzymes. The structure of the boronic acid adduct indicates ways to improve the affinity of this class of inhibitors. This structure of 908R class C beta-lactamase in complex with a transitionstate analogue provides further insights into the mechanism of action of these hydrolases

    Crystal structure of Enterobacter cloacae 908R class C beta-lactamase bound to iodo-acetamido-phenyl boronic acid, a transition-state analogue

    Full text link
    The structures of the, class C beta-lactamase from Enterobacter cloacae 908R alone and in complex with a baronic acid transition-state analogue were determined by X-ray crystallography at 2.1 and 2.3 Angstrom, respectively. The structure of the enzyme resembles those of other class C beta-lactamases. The structure of the. complex with the transition-state analogue, iodo-acetamido-phenyl boronic acid, shows that the inhibitor is covalently, bound to the active-site serine (Ser64). Binding of the inhibitor within the active site is compared with previously determined structures of complexes with other class C enzymes. The structure of the boronic acid adduct indicates ways to improve the affinity of this class of inhibitors. This structure of 908R class C beta-lactamase in complex with a transitionstate analogue provides further insights into the mechanism of action of these hydrolases

    Expression, purification, crystallization and preliminary X-ray analysis of the native class C beta-lactamase from Enterobacter cloacae 908R and two mutants.

    Full text link
    Crystals have been obtained of the Enterobacter cloacae 908R beta-lactamase and two point mutants by the vapour-diffusion method using similar conditions [pH 9.0, polyethylene glycol (M(r) = 6000) as precipitant]. The three crystal forms belong to the orthorhombic space group P2(1)2(1)2, with roughly the same unit-cell parameters; i.e. for the wild-type crystals a = 46.46, b = 82.96, c = 95.31 A. In the best cases, the crystals diffract to about 2.1 A resolution on a rotating-anode X-ray source at room temperature. Co-crystallization experiments of poor substrates with the wild-type protein and the active-site serine mutant (S64C) are planned and should lead to a better understanding of the catalytic mechanism of class C beta-lactamases

    TEM1 beta-lactamase structure solved by molecular replacement and refined structure of the S235A mutant.

    Full text link
    beta-Lactamases are bacterial enzymes which catalyse the hydrolysis of the beta-lactam ring of penicillins, cephalosporins and related compounds, thus inactivating these antibiotics. The crystal structure of the TEM1 beta-lactamase has been determined at 1.9 A resolution by the molecular-replacement method, using the atomic coordinates of two homologous beta-lactamase refined structures which show about 36% strict identity in their amino-acid sequences and 1.96 A r.m.s. deviation between equivalent Calpha atoms. The TEM1 enzyme crystallizes in space group P2(1)2(1)2(1) and there is one molecule per asymmetric unit. The structure was refined by simulated annealing to an R-factor of 15.6% for 15 086 reflections with I >/= 2sigma(I) in the resolution range 5.0-1.9 A. The final crystallographic structure contains 263 amino-acid residues, one sulfate anion in the catalytic cleft and 135 water molecules per asymmetric unit. The folding is very similar to that of the other known class A beta-lactamases. It consists of two domains, the first is formed by a five-stranded beta-sheet covered by three alpha-helices on one face and one alpha-helix on the other, the second domain contains mainly alpha-helices. The catalytic cleft is located at the interface between the two domains. We also report the crystallographic study of the TEM S235A mutant. This mutation of an active-site residue specifically decreases the acylation rate of cephalosporins. This TEM S235A mutant crystallizes under the same conditions as the wild-type protein and its structure was refined at 2.0 A resolution with an R value of 17.6%. The major modification is the appearance of a water molecule near the mutated residue, which is incompatible with the OG 235 present in the wild-type enzyme, and causes very small perturbations in the interaction network in the active site

    Dd-Peptidases and Beta-Lactamases: Catalytic Mechanisms and Specificities

    Full text link
    DD-peptidases and beta-lactamases share several common properties, including the formation of an acylenzyme intermediate in their catalytic pathways. In their interactions with beta-lactam antibiotics, the stability of this intermediate is much higher with the peptidases than with the beta-lactamases. The structural factors responsible for this difference have not been identified. The evolution of beta-lactamases is taking place before our eyes, since mutants are constantly selected which can hydrolyze the molecules newly introduced as "beta-lactamase resistant" in the chemotherapeutic arsenal

    The 2.4-A crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin.

    Full text link
    Penicillin-binding proteins (PBPs) are membrane proteins involved in the final stages of peptidoglycan synthesis and represent the targets of beta-lactam antibiotics. Enterococci are naturally resistant to these antibiotics because they produce a PBP, named PBP5fm in Enterococcus faecium, with low-level affinity for beta-lactams. We report here the crystal structure of the acyl-enzyme complex of PBP5fm with benzylpenicillin at a resolution of 2.4 A. A characteristic of the active site, which distinguishes PBP5fm from other PBPs of known structure, is the topology of the loop 451-465 defining the left edge of the cavity. The residue Arg464, involved in a salt bridge with the residue Asp481, confers a greater rigidity to the PBP5fm active site. In addition, the presence of the Val465 residue, which points into the active site, reducing its accessibility, could account for the low affinity of PBP5fm for beta-lactam. This loop is common to PBPs of low affinity, such as PBP2a from Staphylococcus aureus and PBP3 from Bacillus subtilis. Moreover, the insertion of a serine after residue 466 in the most resistant strains underlines even more the determining role of this loop in the recognition of the substrates

    The catalytic mechanism of beta-lactamases: NMR titration of an active-site lysine residue of the TEM-1 enzyme.

    Full text link
    Beta-Lactamases are widespread in the bacterial world, where they are responsible for resistance to penicillins, cephalosporins, and related compounds, currently the most widely used antibacterial agents. Detailed structural and mechanistic understanding of these enzymes can be expected to guide the design of new antibacterial compounds resistant to their action. A number of high-resolution structures are available for class A beta-lactamases, whose catalytic mechanism involves the acylation of a serine residue at the active site. The identity of the general base which participates in the activation of this serine residue during catalysis has been the subject of controversy, both a lysine residue and a glutamic acid residue having been proposed as candidates for this role. We have used the pH dependence of chemical modification of epsilon-amino groups by 2,4,6,-trinitrobenzenesulfonate and the pH dependence of the epsilon-methylene 1H and 13C chemical shifts (in enzyme selectively labeled with [epsilon-13C]lysine) to estimate the pKa of the relevant lysine residue, lysine-73, of TEM-1 beta-lactamase. Both methods show that the pKa of this residue is > 10, making it very unlikely that this residue could act as a proton acceptor in catalysis. An alternative mechanism in which this role is performed by glutamate-166 through an intervening water molecule is described

    Crystallization and X-ray diffraction study of the Streptomyces K15 penicillin-binding DD-transpeptidase.

    Full text link
    The 262 amino acid residue long DD-transpeptidase/penicillin-binding protein of Streptomyces K15 has been crystallized at room temperature by using the hanging drop vapour diffusion technique. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit cell parameters a = 46.4 A, b = 54.1 A and c = 108.3 A. They contain one protein molecule per asymmetric unit and diffract to about 1.9 A. X-ray data have been collected to 2.0 A from a native crystal. The previously published amino acid sequence of the protein has been corrected at positions 71, 72, 113, 114 and 156
    corecore