3,653 research outputs found
Lepton masses and mixing angles from heterotic orbifold models
We systematically study the possibility for realizing realistic values of
lepton mass ratios and mixing angles by using only renormalizable Yukawa
couplings derived from heterotic -I orbifold. We assume one pair of up and
down sector Higgs fields. We consider both the Dirac neutrino mass scenario and
the seesaw scenario with degenerate right-handed majorana neutrino masses. It
is found that realistic values of the charged lepton mass ratios,
and , the neutrino mass squared difference ratio, , and the lepton mixing angles can be obtained in
certain cases.Comment: 22 pages, late
General-Relativistic MHD for the Numerical Construction of Dynamical Spacetimes
We assemble the equations of general relativistic magnetohydrodynamics (MHD)
in 3+1 form. These consist of the complete coupled set of Maxwell equations for
the electromagnetic field, Einstein's equations for the gravitational field,
and the equations of relativistic MHD for a perfectly conducting ideal gas. The
adopted form of the equations is suitable for evolving numerically a
relativistic MHD fluid in a dynamical spacetime characterized by a strong
gravitational field.Comment: 8 pages; scheduled for March 10 issue of Ap
Gravitational waves from relativistic rotational core collapse
We present results from simulations of axisymmetric relativistic rotational
core collapse. The general relativistic hydrodynamic equations are formulated
in flux-conservative form and solved using a high-resolution shock-capturing
scheme. The Einstein equations are approximated with a conformally flat
3-metric. We use the quadrupole formula to extract waveforms of the
gravitational radiation emitted during the collapse. A comparison of our
results with those of Newtonian simulations shows that the wave amplitudes
agree within 30%. Surprisingly, in some cases, relativistic effects actually
diminish the amplitude of the gravitational wave signal. We further find that
the parameter range of models suffering multiple coherent bounces due to
centrifugal forces is considerably smaller than in Newtonian simulations.Comment: 4 pages, 3 figure
Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to black hole
Binary neutron-star (BNS) systems represent primary sources for the
gravitational-wave (GW) detectors. We present a systematic investigation in
full GR of the dynamics and GW emission from BNS which inspiral and merge,
producing a black hole (BH) surrounded by a torus. Our results represent the
state of the art from several points of view: (i) We use HRSC methods for the
hydrodynamics equations and high-order finite-differencing techniques for the
Einstein equations; (ii) We employ AMR techniques with "moving boxes"; (iii) We
use as initial data BNSs in irrotational quasi-circular orbits; (iv) We exploit
the isolated-horizon formalism to measure the properties of the BHs produced in
the merger; (v) Finally, we use two approaches, based either on gauge-invariant
perturbations or on Weyl scalars, to calculate the GWs. These techniques allow
us to perform accurate evolutions on timescales never reported before (ie ~30
ms) and to provide the first complete description of the inspiral and merger of
a BNS leading to the prompt or delayed formation of a BH and to its ringdown.
We consider either a polytropic or an ideal fluid EOS and show that already
with this idealized EOSs a very interesting phenomenology emerges. In
particular, we show that while high-mass binaries lead to the prompt formation
of a rapidly rotating BH surrounded by a dense torus, lower-mass binaries give
rise to a differentially rotating NS, which undergoes large oscillations and
emits large amounts of GWs. Eventually, also the NS collapses to a rotating BH
surrounded by a torus. Finally, we also show that the use of a non-isentropic
EOS leads to significantly different evolutions, giving rise to a delayed
collapse also with high-mass binaries, as well as to a more intense emission of
GWs and to a geometrically thicker torus.Comment: 35 pages, 29 figures, corrected few typos to match the published
version. High-resolution figures and animations can be found at
http://numrel.aei.mpg.de/Visualisations/Archive/BinaryNeutronStars/Relativistic_Meudon/index.htm
Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes
We report a new implementation for axisymmetric simulation in full general
relativity. In this implementation, the Einstein equations are solved using the
Nakamura-Shibata formulation with the so-called cartoon method to impose an
axisymmetric boundary condition, and the general relativistic hydrodynamic
equations are solved using a high-resolution shock-capturing scheme based on an
approximate Riemann solver. As tests, we performed the following simulations:
(i) long-term evolution of non-rotating and rapidly rotating neutron stars,
(ii) long-term evolution of neutron stars of a high-amplitude damping
oscillation accompanied with shock formation, (iii) collapse of unstable
neutron stars to black holes, and (iv) stellar collapses to neutron stars. The
tests (i)--(iii) were carried out with the -law equation of state, and
the test (iv) with a more realistic parametric equation of state for
high-density matter. We found that this new implementation works very well: It
is possible to perform the simulations for stable neutron stars for more than
10 dynamical time scales, to capture strong shocks formed at stellar core
collapses, and to accurately compute the mass of black holes formed after the
collapse and subsequent accretion. In conclusion, this implementation is robust
enough to apply to astrophysical problems such as stellar core collapse of
massive stars to a neutron star and black hole, phase transition of a neutron
star to a high-density star, and accretion-induced collapse of a neutron star
to a black hole. The result for the first simulation of stellar core collapse
to a neutron star started from a realistic initial condition is also presented.Comment: 28 pages, to appear in PRD 67, 0440XX (2003
New criterion for direct black hole formation in rapidly rotating stellar collapse
We study gravitational collapse of rapidly rotating relativistic polytropes
of the adiabatic index and 2, in which the spin parameter where and are total angular momentum and
gravitational mass, in full general relativity.
First, analyzing initial distributions of the mass and the spin parameter
inside stars, we predict the final outcome after the collapse. Then, we perform
fully general relativistic simulations on assumption of axial and equatorial
symmetries and confirm our predictions. As a result of simulations, we find
that in contrast with the previous belief, even for stars with , the
collapse proceeds to form a seed black hole at central region, and the seed
black hole subsequently grows as the ambient fluids accrete onto it. We also
find that growth of angular momentum and mass of the seed black hole can be
approximately determined from the initial profiles of the density and the
specific angular momentum. We define an effective spin parameter at the central
region of the stars, , and propose a new criterion for black hole
formation as q_{c} \alt 1. Plausible reasons for the discrepancy between our
and previous results are clarified.Comment: submitted to PR
Three-dimensional general relativistic hydrodynamics II: long-term dynamics of single relativistic stars
This is the second in a series of papers on the construction and validation
of a three-dimensional code for the solution of the coupled system of the
Einstein equations and of the general relativistic hydrodynamic equations, and
on the application of this code to problems in general relativistic
astrophysics. In particular, we report on the accuracy of our code in the
long-term dynamical evolution of relativistic stars and on some new physics
results obtained in the process of code testing. The tests involve single
non-rotating stars in stable equilibrium, non-rotating stars undergoing radial
and quadrupolar oscillations, non-rotating stars on the unstable branch of the
equilibrium configurations migrating to the stable branch, non-rotating stars
undergoing gravitational collapse to a black hole, and rapidly rotating stars
in stable equilibrium and undergoing quasi-radial oscillations. The numerical
evolutions have been carried out in full general relativity using different
types of polytropic equations of state using either the rest-mass density only,
or the rest-mass density and the internal energy as independent variables. New
variants of the spacetime evolution and new high resolution shock capturing
(HRSC) treatments based on Riemann solvers and slope limiters have been
implemented and the results compared with those obtained from previous methods.
Finally, we have obtained the first eigenfrequencies of rotating stars in full
general relativity and rapid rotation. A long standing problem, such
frequencies have not been obtained by other methods. Overall, and to the best
of our knowledge, the results presented in this paper represent the most
accurate long-term three-dimensional evolutions of relativistic stars available
to date.Comment: 19 pages, 17 figure
WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics
The accurate modelling of astrophysical scenarios involving compact objects
and magnetic fields, such as the collapse of rotating magnetized stars to black
holes or the phenomenology of gamma-ray bursts, requires the solution of the
Einstein equations together with those of general-relativistic
magnetohydrodynamics. We present a new numerical code developed to solve the
full set of general-relativistic magnetohydrodynamics equations in a dynamical
and arbitrary spacetime with high-resolution shock-capturing techniques on
domains with adaptive mesh refinements. After a discussion of the equations
solved and of the techniques employed, we present a series of testbeds carried
out to validate the code and assess its accuracy. Such tests range from the
solution of relativistic Riemann problems in flat spacetime, over to the
stationary accretion onto a Schwarzschild black hole and up to the evolution of
oscillating magnetized stars in equilibrium and constructed as consistent
solutions of the coupled Einstein-Maxwell equations.Comment: minor changes to match the published versio
- …