3,653 research outputs found

    Lepton masses and mixing angles from heterotic orbifold models

    Full text link
    We systematically study the possibility for realizing realistic values of lepton mass ratios and mixing angles by using only renormalizable Yukawa couplings derived from heterotic Z6Z_6-I orbifold. We assume one pair of up and down sector Higgs fields. We consider both the Dirac neutrino mass scenario and the seesaw scenario with degenerate right-handed majorana neutrino masses. It is found that realistic values of the charged lepton mass ratios, me/mτm_e/m_\tau and mμ/mτm_\mu/m_\tau, the neutrino mass squared difference ratio, Δm312/Δm212\Delta m^2_{31}/\Delta m^2_{21}, and the lepton mixing angles can be obtained in certain cases.Comment: 22 pages, late

    General-Relativistic MHD for the Numerical Construction of Dynamical Spacetimes

    Get PDF
    We assemble the equations of general relativistic magnetohydrodynamics (MHD) in 3+1 form. These consist of the complete coupled set of Maxwell equations for the electromagnetic field, Einstein's equations for the gravitational field, and the equations of relativistic MHD for a perfectly conducting ideal gas. The adopted form of the equations is suitable for evolving numerically a relativistic MHD fluid in a dynamical spacetime characterized by a strong gravitational field.Comment: 8 pages; scheduled for March 10 issue of Ap

    Gravitational waves from relativistic rotational core collapse

    Full text link
    We present results from simulations of axisymmetric relativistic rotational core collapse. The general relativistic hydrodynamic equations are formulated in flux-conservative form and solved using a high-resolution shock-capturing scheme. The Einstein equations are approximated with a conformally flat 3-metric. We use the quadrupole formula to extract waveforms of the gravitational radiation emitted during the collapse. A comparison of our results with those of Newtonian simulations shows that the wave amplitudes agree within 30%. Surprisingly, in some cases, relativistic effects actually diminish the amplitude of the gravitational wave signal. We further find that the parameter range of models suffering multiple coherent bounces due to centrifugal forces is considerably smaller than in Newtonian simulations.Comment: 4 pages, 3 figure

    Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to black hole

    Full text link
    Binary neutron-star (BNS) systems represent primary sources for the gravitational-wave (GW) detectors. We present a systematic investigation in full GR of the dynamics and GW emission from BNS which inspiral and merge, producing a black hole (BH) surrounded by a torus. Our results represent the state of the art from several points of view: (i) We use HRSC methods for the hydrodynamics equations and high-order finite-differencing techniques for the Einstein equations; (ii) We employ AMR techniques with "moving boxes"; (iii) We use as initial data BNSs in irrotational quasi-circular orbits; (iv) We exploit the isolated-horizon formalism to measure the properties of the BHs produced in the merger; (v) Finally, we use two approaches, based either on gauge-invariant perturbations or on Weyl scalars, to calculate the GWs. These techniques allow us to perform accurate evolutions on timescales never reported before (ie ~30 ms) and to provide the first complete description of the inspiral and merger of a BNS leading to the prompt or delayed formation of a BH and to its ringdown. We consider either a polytropic or an ideal fluid EOS and show that already with this idealized EOSs a very interesting phenomenology emerges. In particular, we show that while high-mass binaries lead to the prompt formation of a rapidly rotating BH surrounded by a dense torus, lower-mass binaries give rise to a differentially rotating NS, which undergoes large oscillations and emits large amounts of GWs. Eventually, also the NS collapses to a rotating BH surrounded by a torus. Finally, we also show that the use of a non-isentropic EOS leads to significantly different evolutions, giving rise to a delayed collapse also with high-mass binaries, as well as to a more intense emission of GWs and to a geometrically thicker torus.Comment: 35 pages, 29 figures, corrected few typos to match the published version. High-resolution figures and animations can be found at http://numrel.aei.mpg.de/Visualisations/Archive/BinaryNeutronStars/Relativistic_Meudon/index.htm

    Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes

    Get PDF
    We report a new implementation for axisymmetric simulation in full general relativity. In this implementation, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests, we performed the following simulations: (i) long-term evolution of non-rotating and rapidly rotating neutron stars, (ii) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with shock formation, (iii) collapse of unstable neutron stars to black holes, and (iv) stellar collapses to neutron stars. The tests (i)--(iii) were carried out with the Γ\Gamma-law equation of state, and the test (iv) with a more realistic parametric equation of state for high-density matter. We found that this new implementation works very well: It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star and black hole, phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic initial condition is also presented.Comment: 28 pages, to appear in PRD 67, 0440XX (2003

    New criterion for direct black hole formation in rapidly rotating stellar collapse

    Full text link
    We study gravitational collapse of rapidly rotating relativistic polytropes of the adiabatic index Γ=1.5\Gamma = 1.5 and 2, in which the spin parameter q≡J/M2>1q \equiv J/M^{2} > 1 where JJ and MM are total angular momentum and gravitational mass, in full general relativity. First, analyzing initial distributions of the mass and the spin parameter inside stars, we predict the final outcome after the collapse. Then, we perform fully general relativistic simulations on assumption of axial and equatorial symmetries and confirm our predictions. As a result of simulations, we find that in contrast with the previous belief, even for stars with q>1q > 1, the collapse proceeds to form a seed black hole at central region, and the seed black hole subsequently grows as the ambient fluids accrete onto it. We also find that growth of angular momentum and mass of the seed black hole can be approximately determined from the initial profiles of the density and the specific angular momentum. We define an effective spin parameter at the central region of the stars, qcq_{c}, and propose a new criterion for black hole formation as q_{c} \alt 1. Plausible reasons for the discrepancy between our and previous results are clarified.Comment: submitted to PR

    Three-dimensional general relativistic hydrodynamics II: long-term dynamics of single relativistic stars

    Get PDF
    This is the second in a series of papers on the construction and validation of a three-dimensional code for the solution of the coupled system of the Einstein equations and of the general relativistic hydrodynamic equations, and on the application of this code to problems in general relativistic astrophysics. In particular, we report on the accuracy of our code in the long-term dynamical evolution of relativistic stars and on some new physics results obtained in the process of code testing. The tests involve single non-rotating stars in stable equilibrium, non-rotating stars undergoing radial and quadrupolar oscillations, non-rotating stars on the unstable branch of the equilibrium configurations migrating to the stable branch, non-rotating stars undergoing gravitational collapse to a black hole, and rapidly rotating stars in stable equilibrium and undergoing quasi-radial oscillations. The numerical evolutions have been carried out in full general relativity using different types of polytropic equations of state using either the rest-mass density only, or the rest-mass density and the internal energy as independent variables. New variants of the spacetime evolution and new high resolution shock capturing (HRSC) treatments based on Riemann solvers and slope limiters have been implemented and the results compared with those obtained from previous methods. Finally, we have obtained the first eigenfrequencies of rotating stars in full general relativity and rapid rotation. A long standing problem, such frequencies have not been obtained by other methods. Overall, and to the best of our knowledge, the results presented in this paper represent the most accurate long-term three-dimensional evolutions of relativistic stars available to date.Comment: 19 pages, 17 figure

    WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics

    Get PDF
    The accurate modelling of astrophysical scenarios involving compact objects and magnetic fields, such as the collapse of rotating magnetized stars to black holes or the phenomenology of gamma-ray bursts, requires the solution of the Einstein equations together with those of general-relativistic magnetohydrodynamics. We present a new numerical code developed to solve the full set of general-relativistic magnetohydrodynamics equations in a dynamical and arbitrary spacetime with high-resolution shock-capturing techniques on domains with adaptive mesh refinements. After a discussion of the equations solved and of the techniques employed, we present a series of testbeds carried out to validate the code and assess its accuracy. Such tests range from the solution of relativistic Riemann problems in flat spacetime, over to the stationary accretion onto a Schwarzschild black hole and up to the evolution of oscillating magnetized stars in equilibrium and constructed as consistent solutions of the coupled Einstein-Maxwell equations.Comment: minor changes to match the published versio
    • …
    corecore