29 research outputs found

    Recent advances in the molecular understanding of glioblastoma

    Get PDF
    Glioblastoma is the most common and most aggressive primary brain tumor. Despite maximum treatment, patients only have a median survival time of 15 months, because of the tumor’s resistance to current therapeutic approaches. Thus far, methylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter has been the only confirmed molecular predictive factor in glioblastoma. Novel “genome-wide” techniques have identified additional important molecular alterations as mutations in isocitrate dehydrogenase 1 (IDH1) and its prognostic importance. This review summarizes findings and techniques of genetic, epigenetic, transcriptional, and proteomic studies of glioblastoma. It provides the clinician with an up-to-date overview of current identified molecular alterations that should ultimately lead to new therapeutic targets and more individualized treatment approaches in glioblastoma

    Absence of AKT1 Mutations in Glioblastoma

    Get PDF
    Background: Oncogenic activation of the PI3K signalling pathway plays a pivotal role in the development of glioblastoma multiforme (GBM). A central node in PI3K downstream signalling is controlled by the serine-threonine kinase AKT1. A somatic mutation affecting residue E17 of the AKT1 gene has recently been identified in breast and colon cancer. The E17K change results in constitutive AKT1 activation, induces leukaemia in mice, and accordingly, may be therapeutically exploited to target the PI3K pathway. Assessing whether AKT1 is activated by somatic mutations in GBM is relevant to establish its role in this aggressive disease. Methodology/Principal Findings: We performed a systematic mutational analysis of the complete coding sequence of the AKT1 gene in a panel of 109 tumor GBM samples and nine high grade astrocytoma cell lines. However, no somatic mutations were detected in the coding region of AKT1. Conclusions/Significance: Our data indicate that in GBM oncogenic deregulation of the PI3K pathway does not involve somatic mutations in the coding region of AKT1

    Mutational Profile of GNAQQ209 in Human Tumors

    Get PDF
    BACKGROUND: Frequent somatic mutations have recently been identified in the ras-like domain of the heterotrimeric G protein alpha-subunit (GNAQ) in blue naevi 83%, malignant blue naevi (50%) and ocular melanoma of the uvea (46%). The mutations exclusively affect codon 209 and result in GNAQ constitutive activation which, in turn, acts as a dominant oncogene. METHODOLOGY: To assess if the mutations are present in other tumor types we performed a systematic mutational profile of the GNAQ exon 5 in a panel of 922 neoplasms, including glioblastoma, gastrointestinal stromal tumors (GIST), acute myeloid leukemia (AML), blue naevi, skin melanoma, bladder, breast, colorectal, lung, ovarian, pancreas, and thyroid carcinomas. PRINCIPAL FINDINGS: We detected the previously reported mutations in 6/13 (46%) blue naevi. Changes affecting Q209 were not found in any of the other tumors. Our data indicate that the occurrence of GNAQ mutations display a unique pattern being present in a subset of melanocytic tumors but not in malignancies of glial, epithelial and stromal origin analyzed in this study

    Reply to: Familial syndromes associated with intracranial tumours: a review

    No full text
    https://scholarworks.utrgv.edu/hidalgococ/1060/thumbnail.jp

    Genomic landscapes of cancers: prospects for targeted therapies

    No full text

    Co-occurrence in body site of malformations and cancer

    No full text
    In many malformation syndromes benign and malignant tumours develop more frequently than in the general population. Malformations result from an abnormal intrinsic developmental process. It can be hypothesised that disturbed regulation of cell growth as can become evident by the presence of benign and malignant tumours, which will occur at the same site of a malformation or at other sites at which the gene involved in the malformation is functioning. The present study aimed to compare the localisation of malignant and benign tumours to the localisation of major and minor characteristics of syndromes that have either of two malformations, i.e. microtia and hypospadias. To eliminate co-occurrence of a malformation syndrome and tumours by chance we confined evaluations to syndromes which have been described in >100 individuals. We identified 11 syndromes associated with microtia and 26 syndromes associated with hypospadias, for which co-localisation of (benign and malignant) tumours with (major and minor) syndrome characteristics was determined. In both groups of syndromes tumours were found to be localised at the same body site as the major and minor characteristics of the syndromes in two-third of the tumours. There was no significant difference in co-occurrence in site between benign and malignant tumours. We conclude that in two groups of malformation syndromes which go along with a different core malformation, benign and malignant tumours co-localise with the core malformation or with other sites at which the gene involved is functioning. This adds further proof that tumours in malformation syndromes can usually be explained by abnormal functioning of the same gene that has caused the malformation syndrom

    Reversibele neurologische uitval jaren na hooggradig glioom: het SMART-syndroom

    No full text
    Survival in patients with high grade glioma has been extended in recent years as a result of more intensive therapy. As a consequence, more late term complications of treatment may be observed. A 69-year-old woman presented at the outpatient department of Neurology with headache and loss of strength in the left arm. She had been treated 7 years previously for a high grade glioma with resection and radiotherapy. One year later she had received chemotherapy for a local recurrence. Since then she was free of complaints. At investigation a left sided hemiparesis was found. As recurrence of the tumour was suspected, MR imaging of the brain was performed, which showed abnormalities suggestive for the so called 'stroke-like migraine attacks after radiotherapy' (SMART) syndrome. The further clinical course, with spontaneous recovery of strength within a few weeks and the regression of the cortical hyperintensity on MRI, confirmed the probable diagnosis. The SMART syndrome is a relatively unknown condition and should be included in the differential diagnosis in patients who present with new complaints long after cerebral radiotherap

    The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation

    No full text
    Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key events in the development of glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (ICC), and angioimmunoblastic T-cell lymphoma. They also cause D-2-hydroxyglutaric aciduria and Ollier and Maffucci syndromes. IDH1/2 mutations are associated with prolonged survival in glioma and in ICC, but not in AML. The reason for this is unknown. In their wild-type forms, IDH1 and IDH2 convert isocitrate and NADP(+) to α-ketoglutarate (αKG) and NADPH. Missense mutations in the active sites of these enzymes induce a neo-enzymatic reaction wherein NADPH reduces αKG to D-2-hydroxyglutarate (D-2HG). The resulting D-2HG accumulation leads to hypoxia-inducible factor 1α degradation, and changes in epigenetics and extracellular matrix homeostasis. Such mutations also imply less NADPH production capacity. Each of these effects could play a role in cancer formation. Here, we provide an overview of the literature and discuss which downstream molecular effects are likely to be the drivers of the oncogenic and survival-prolonging properties of IDH1/2 mutations. We discuss interactions between mutant IDH1/2 inhibitors and conventional therapies. Understanding of the biochemical consequences of IDH1/2 mutations in oncogenesis and survival prolongation will yield valuable information for rational therapy design: it will tell us which oncogenic processes should be blocked and which "survivalogenic" effects should be retaine
    corecore