730 research outputs found

    Molecular epidemiology of Plasmodium species prevalent in Yemen based on 18 s rRNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is an endemic disease in Yemen and is responsible for 4.9 deaths per 100,000 population per year and 43,000 disability adjusted life years lost. Although malaria in Yemen is caused mainly by <it>Plasmodium falciparum </it>and <it>Plasmodium vivax</it>, there are no sequence data available on the two species. This study was conducted to investigate the distribution of the <it>Plasmodium </it>species based on the molecular detection and to study the molecular phylogeny of these parasites.</p> <p>Methods</p> <p>Blood samples from 511 febrile patients were collected and a partial region of the 18 s ribosomal RNA (18 s rRNA) gene was amplified using nested PCR. From the 86 positive blood samples, 13 <it>Plasmodium falciparum </it>and 4 <it>Plasmodium vivax </it>were selected and underwent cloning and, subsequently, sequencing and the sequences were subjected to phylogenetic analysis using the neighbor-joining and maximum parsimony methods.</p> <p>Results</p> <p>Malaria was detected by PCR in 86 samples (16.8%). The majority of the single infections were caused by <it>P. falciparum </it>(80.3%), followed by <it>P. vivax </it>(5.8%). Mixed infection rates of <it>P. falciparum </it>+ <it>P. vivax </it>and <it>P. falciparum </it>+ <it>P. malariae </it>were 11.6% and 2.3%, respectively. All <it>P. falciparum </it>isolates were grouped with the strain 3D7, while <it>P. vivax </it>isolates were grouped with the strain Salvador1. Phylogenetic trees based on 18 s rRNA placed the <it>P. falciparum </it>isolates into three sub-clusters and <it>P. vivax </it>into one cluster. Sequence alignment analysis showed 5-14.8% SNP in the partial sequences of the 18 s rRNA of <it>P. falciparum</it>.</p> <p>Conclusions</p> <p>Although <it>P. falciparum </it>is predominant, <it>P. vivax</it>, <it>P. malariae </it>and mixed infections are more prevalent than has been revealed by microscopy. This overlooked distribution should be considered by malaria control strategy makers. The genetic polymorphisms warrant further investigation.</p

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    Superluminal motion of a relativistic jet in the neutron star merger GW170817

    Get PDF
    The binary neutron star merger GW170817 was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 41+/-3 Mpc. The radio and X-ray afterglows of GW170817 exhibited delayed onset, a gradual rise in the emission with time as t^0.8, a peak at about 150 days post-merger, followed by a relatively rapid decline. To date, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon and a successful-jet cocoon (a.k.a. structured jet). However, the observational data have remained inconclusive as to whether GW170817 launched a successful relativistic jet. Here we show, through Very Long Baseline Interferometry, that the compact radio source associated with GW170817 exhibits superluminal motion between two epochs at 75 and 230 days post-merger. This measurement breaks the degeneracy between the models and indicates that, while the early-time radio emission was powered by a wider-angle outflow (cocoon), the late-time emission was most likely dominated by an energetic and narrowly-collimated jet, with an opening angle of <5 degrees, and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the growing evidence linking binary neutron star mergers and short gamma-ray bursts.Comment: 42 pages, 4 figures (main text), 2 figures (supplementary text), 2 tables. Referee and editor comments incorporate

    Harnessing Naturally Occurring Tumor Immunity: A Clinical Vaccine Trial in Prostate Cancer

    Get PDF
    International audienceBACKGROUND:Studies of patients with paraneoplastic neurologic disorders (PND) have revealed that apoptotic tumor serves as a potential potent trigger for the initiation of naturally occurring tumor immunity. The purpose of this study was to assess the feasibility, safety, and immunogenicity of an apoptotic tumor-autologous dendritic cell (DC) vaccine.METHODS AND FINDINGS:We have modeled PND tumor immunity in a clinical trial in which apoptotic allogeneic prostate tumor cells were used to generate an apoptotic tumor-autologous dendritic cell vaccine. Twenty-four prostate cancer patients were immunized in a Phase I, randomized, single-blind, placebo-controlled study to assess the safety and immunogenicity of this vaccine. Vaccinations were safe and well tolerated. Importantly, we also found that the vaccine was immunogenic, inducing delayed type hypersensitivity (DTH) responses and CD4+ and CD8+ T cell proliferation, with no effect on FoxP3+ regulatory T cells. A statistically significant increase in T cell proliferation responses to prostate tumor cells in vitro (p = 0.002), decrease in prostate specific antigen (PSA) slope (p = 0.016), and a two-fold increase in PSA doubling time (p = 0.003) were identified when we compared data before and after vaccination.CONCLUSIONS:An apoptotic cancer cell vaccine modeled on naturally occurring tumor immune responses in PND patients provides a safe and immunogenic tumor vaccine

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    A whole cell pathway screen reveals seven novel chemosensitizers to combat chloroquine resistant malaria

    Get PDF
    Due to the widespread prevalence of resistant parasites, chloroquine (CQ) was removed from front-line antimalarial chemotherapy in the 1990s despite its initial promise of disease eradication. Since then, resistance-conferring mutations have been identified in transporters such as the PfCRT, that allow for the efflux of CQ from its primary site of action, the parasite digestive vacuole. Chemosensitizing/ chemoreversing compounds interfere with the function of these transporters thereby sensitizing parasites to CQ once again. However, compounds identified thus far have disappointing in vivo efficacy and screening for alternative candidates is required to revive this strategy. In this study, we propose a simple and direct means to rapidly screen for such compounds using a fluorescent-tagged CQ molecule. When this screen was applied to a small library, seven novel chemosensitizers (octoclothepin, methiothepin, metergoline, loperamide, chlorprothixene, L-703,606 and mibefradil) were quickly elucidated, including two which showed greater potency than the classical chemosensitizers verapamil and desipramine

    Just how versatile are domains?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Creating new protein domain arrangements is a frequent mechanism of evolutionary innovation. While some domains always form the same combinations, others form many different arrangements. This ability, which is often referred to as versatility or promiscuity of domains, its a random evolutionary model in which a domain's promiscuity is based on its relative frequency of domains.</p> <p>Results</p> <p>We show that there is a clear relationship across genomes between the promiscuity of a given domain and its frequency. However, the strength of this relationship differs for different domains. We thus redefine domain promiscuity by defining a new index, <it>DV I </it>("domain versatility index"), which eliminates the effect of domain frequency. We explore links between a domain's versatility, when unlinked from abundance, and its biological properties.</p> <p>Conclusion</p> <p>Our results indicate that domains occurring as single domain proteins and domains appearing frequently at protein termini have a higher <it>DV I</it>. This is consistent with previous observations that the evolution of domain re-arrangements is primarily driven by fusion of pre-existing arrangements and single domains as well as loss of domains at protein termini. Furthermore, we studied the link between domain age, defined as the first appearance of a domain in the species tree, and the <it>DV I</it>. Contrary to previous studies based on domain promiscuity, it seems as if the <it>DV I </it>is age independent. Finally, we find that contrary to previously reported findings, versatility is lower in Eukaryotes. In summary, our measure of domain versatility indicates that a random attachment process is sufficient to explain the observed distribution of domain arrangements and that several views on domain promiscuity need to be revised.</p
    corecore