10,301 research outputs found
Leptogenesis from Soft Supersymmetry Breaking (Soft Leptogenesis)
Soft leptogenesis is a scenario in which the cosmic baryon asymmetry is
produced from a lepton asymmetry generated in the decays of heavy sneutrinos
(the partners of the singlet neutrinos of the seesaw) and where the relevant
sources of CP violation are the complex phases of soft supersymmetry-breaking
terms. We explain the motivations for soft leptogenesis, and review its basic
ingredients: the different CP-violating contributions, the crucial role played
by thermal corrections, and the enhancement of the efficiency from lepton
flavour effects. We also discuss the high temperature regime GeV in
which the cosmic baryon asymmetry originates from an initial asymmetry of an
anomalous -charge, and soft leptogenesis reembodies in -genesis.Comment: References updated. Some minor corrections to match the published
versio
The scaling properties of exchange and correlation holes of the valence shell of second row atoms
We study the exchange and correlation hole of the valence shell of second row
atoms using variational Monte Carlo techniques, especially correlated
estimates, and norm-conserving pseudopotentials. The well-known scaling of the
valence shell provides a tool to probe the behavior of exchange and correlation
as a functional of the density and thus test models of density functional
theory. The exchange hole shows an interesting competition between two scaling
forms -- one caused by self-interaction and another that is approximately
invariant under particle number, related to the known invariance of exchange
under uniform scaling to high density and constant particle number. The
correlation hole shows a scaling trend that is marked by the finite size of the
atom relative to the radius of the hole. Both trends are well captured in the
main by the Perdew-Burke-Ernzerhof generalized-gradient approximation model for
the exchange-correlation hole and energy.Comment: 18 pages, 8 figure
A "kilonova" associated with short-duration gamma-ray burst 130603B
Short-duration gamma-ray bursts (SGRBs) are intense flashes of cosmic
gamma-rays, lasting less than ~2 s, whose origin is one of the great unsolved
questions of astrophysics today. While the favoured hypothesis for their
production, a relativistic jet created by the merger of two compact stellar
objects (specifically, two neutron stars, NS-NS, or a neutron star and a black
hole, NS-BH), is supported by indirect evidence such as their host galaxy
properties, unambiguous confirmation of the model is still lacking. Mergers of
this kind are also expected to create significant quantities of neutron-rich
radioactive species, whose decay should result in a faint transient in the days
following the burst, a so-called "kilonova". Indeed, it is speculated that this
mechanism may be the predominant source of stable r-process elements in the
Universe. Recent calculations suggest much of the kilonova energy should appear
in the near-infrared (nIR) due to the high optical opacity created by these
heavy r-process elements. Here we report strong evidence for such an event
accompanying SGRB 130603B. If this simplest interpretation of the data is
correct, it provides (i) support for the compact object merger hypothesis of
SGRBs, (ii) confirmation that such mergers are likely sites of significant
r-process production and (iii) quite possibly an alternative, un-beamed
electromagnetic signature of the most promising sources for direct detection of
gravitational waves.Comment: preprint of paper appearing in Nature (3 Aug 2013
On Measuring Condensate Fraction in Superconductors
An analysis of off-diagonal long-range order in superconductors shows that
the spin-spin correlation function is significantly influenced by the order if
the order parameter is anisotropic on a microscopic scale. Thus, magnetic
neutron scattering can provide a direct measurement of the condensate fraction
of a superconductor. It is also argued that recent measurements in high
temperature superconductors come very close to achieving this goal.Comment: 4 pages, 1 eps figure, RevTex. A new possibility in the underdoped
regime is added. Other corrections are mino
Observation of Pure Spin Transport in a Diamond Spin Wire
Spin transport electronics - spintronics - focuses on utilizing electron spin
as a state variable for quantum and classical information processing and
storage. Some insulating materials, such as diamond, offer defect centers whose
associated spins are well-isolated from their environment giving them long
coherence times; however, spin interactions are important for transport,
entanglement, and read-out. Here, we report direct measurement of pure spin
transport - free of any charge motion - within a nanoscale quasi 1D 'spin
wire', and find a spin diffusion length ~ 700 nm. We exploit the statistical
fluctuations of a small number of spins ( < 100 net spins) which are
in thermal equilibrium and have no imposed polarization gradient. The spin
transport proceeds by means of magnetic dipole interactions that induce
flip-flop transitions, a mechanism that can enable highly efficient, even
reversible, pure spin currents. To further study the dynamics within the spin
wire, we implement a magnetic resonance protocol that improves spatial
resolution and provides nanoscale spectroscopic information which confirms the
observed spin transport. This spectroscopic tool opens a potential route for
spatially encoding spin information in long-lived nuclear spin states. Our
measurements probe intrinsic spin dynamics at the nanometre scale, providing
detailed insight needed for practical devices which seek to control spin.Comment: 7 pages, 2 figures, under consideration at Nature Nanotechnolog
Is the pi-particle responsible for the 41 meV peak in YBa_2Cu_3O_7?
It is argued that there is no low-energy resonance associated with the
pi-operators introduced by Demler and Zhang. This implies that the Hubbard
model does not possess an approximate SO(5) symmetry generated by these
operators. Recent finite-size studies are re-interpreted accordingly.Comment: 3 pages, latex (revtex
Finite-Size Studies on the SO(5) Symmetry of the Hubbard Model
We present numerical evidence for the approximate SO(5) symmetry of the
Hubbard model on a 10 site cluster. Various dynamic correlation functions
involving the operators, the generators of the SO(5) algebra, are studied
using exact diagonalisation, and are found to possess sharp collective peaks.
Our numerical results also lend support on the interpretation of the recent
resonant neutron scattering peaks in the YBCO superconductors in terms of the
Goldstone modes of the spontaneously broken SO(5) symmetry.Comment: 4 pages, Rev-Tex, includes 2 eps figure
Half metallic digital ferromagnetic heterostructure composed of a -doped layer of Mn in Si
We propose and investigate the properties of a digital ferromagnetic
heterostructure (DFH) consisting of a -doped layer of Mn in Si, using
\textit{ab initio} electronic-structure methods. We find that (i) ferromagnetic
order of the Mn layer is energetically favorable relative to antiferromagnetic,
and (ii) the heterostructure is a two-dimensional half metallic system. The
metallic behavior is contributed by three majority-spin bands originating from
hybridized Mn- and nearest-neighbor Si- states, and the corresponding
carriers are responsible for the ferromagnetic order in the Mn layer. The
minority-spin channel has a calculated semiconducting gap of 0.25 eV. Analysis
of the total and partial densities of states, band structure, Fermi surfaces
and associated charge density reveals the marked two-dimensional nature of the
half metallicity. The band lineup is found to be favorable for retaining the
half metal character to near the Curie temperature (). Being Si based
and possibly having a high as suggested by an experiment on dilutely
doped Mn in Si, the heterostructure may be of special interest for integration
into mature Si technologies for spintronic applications.Comment: 4 pages, 4 figures, Revised version, to appear in Phys. Rev. Let
High energy spin excitations in YBa_2 Cu_3 O_{6.5}
Inelastic neutron scattering has been used to obtain a comprehensive
description of the absolute dynamical spin susceptibility
of the underdoped superconducting cuprate YBa_2 Cu_3 O_{6.5} ()
over a wide range of energies and temperatures ( and ). Spin excitations of two different
symmetries (even and odd under exchange of two adjacent CuO_2 layers) are
observed which, surprisingly, are characterized by different temperature
dependences. The excitations show dispersive behavior at high energies.Comment: 15 pages, 5 figure
- …