23 research outputs found

    3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings

    Get PDF
    RATIONALE: 3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. OBJECTIVE: The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of “interspecies scaling” to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. RESULTS: MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1–2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10–20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. CONCLUSIONS: MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks

    I Have A Remember When

    No full text

    Being pragmatic about healthcare complexity: our experiences applying complexity theory and pragmatism to health services research

    Get PDF
    Abstract Background The healthcare system has proved a challenging environment for innovation, especially in the area of health services management and research. This is often attributed to the complexity of the healthcare sector, characterized by intersecting biological, social and political systems spread across geographically disparate areas. To help make sense of this complexity, researchers are turning towards new methods and frameworks, including simulation modeling and complexity theory. Discussion Herein, we describe our experiences implementing and evaluating a health services innovation in the form of simulation modeling. We explore the strengths and limitations of complexity theory in evaluating health service interventions, using our experiences as examples. We then argue for the potential of pragmatism as an epistemic foundation for the methodological pluralism currently found in complexity research. We discuss the similarities between complexity theory and pragmatism, and close by revisiting our experiences putting pragmatic complexity theory into practice. Conclusion We found the commonalities between pragmatism and complexity theory to be striking. These included a sensitivity to research context, a focus on applied research, and the valuing of different forms of knowledge. We found that, in practice, a pragmatic complexity theory approach provided more flexibility to respond to the rapidly changing context of health services implementation and evaluation. However, this approach requires a redefinition of implementation success, away from pre-determined outcomes and process fidelity, to one that embraces the continual learning, evolution, and emergence that characterized our project
    corecore