22 research outputs found

    Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 2: Abstracts, candidate experiments and feasibility study

    Get PDF
    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress

    Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 1: Executive summary and overview

    Get PDF
    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. The first volume includes the executive summary, overview, scientific justification, history, and planned development of the Facility

    Gas-grain simulation facility: Aerosol and particle research in microgravity

    Get PDF
    This document reports on the proceedings of the Gas-Grain Simulation Facility (GGSF) Science Workshop which was co-hosted by NASA Ames Research Center and Desert Research Institute, University of Nevada System, and held in Las Vegas, Nevada, on May 4-6, 1992. The intent of the workshop was to bring together the science community of potential GGSF experimenters, Science Working Group and staff members, and the Phase A contractor to review the Phase A design with the science participants and to facilitate communication between the science community and the hardware developers. The purpose of this report is to document the information disseminated at the workshop, to record the participants' review of the Phase A GGSF design concept and the current science and technical requirements for the Facility, and to respond to any questions or concerns that were raised at the Workshop. Recommendations for the future based on numerous discussions with the participants are documented, as well as science presentations and poster sessions that were given at the Workshop and a summary of 21 candidate experiments

    Addressing climate change with behavioral science: a global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Estimated Optical Constants of Tagish Lake Meteorite

    No full text
    The visible, near-infrared, and mid-infrared (0.3-25 micron) real and imaginary indices of refraction are derived from reflectance measurements of the Tagish Lake meteorite. These are compared to some real and imaginary indices of refraction of the individual minerals composing the Tagish Lake meteorite. From this comparison it is clear that the imaginary indices of several individual minerals contribute to the estimated imaginary index of the Tagish Lake

    The 1999 Leonid Multi-Instrument Aircraft Campaign - An Early Review

    No full text
    The Leonid meteor storm of 1999 was observed from two B707-type research aircraft by a team of 35 scientists of seven nationalities over the Mediterranean Sea on Nov. 18, 1999. The mission was sponsored by various science programs of NASA, and offered the best possible observing conditions, free of clouds and at a prime location for viewing the storm. The 1999 mission followed a similar effort in 1998, improving upon mission strategy and scope. As before, spectroscopic and imaging experiments targeted meteors and persistent trains, but also airglow, aurora, elves and sprites. The research aimed to address outstanding questions in Planetary Science, Astronomy, Astrobiology and upper atmospheric research, including Aeronornie. In addition, near real-time flux measurements contributed to a USAF sponsored program for space weather awareness. An overview of the first results is given, which are discussed in preparation for future missions

    Title: A uthor(s) : R DOSE FROM NITROGEN-I3 I E DARHT SECOND AXIS Dynamic Experimentation Division 42th Biennial Radiation Protection and Radiation Serving Society hieldirrg Division Topical Meeting DOSE FROM NITROGEN-I 3 'THE DARHT SECOND AXIS lamos Nati

    No full text
    Los Alanios National Laboratory, an affirmative actioi~kqual opporl unity employer, is opcraled by thc University of California for the IJ.S. C)eparlmcnt of Energy under contract W-7405-ENCi-36.By acccptancc of lhis article, the publisher recognizes that thc 1J.S. Govennnent rclaius a nonexclusive, roy;iltylfce licensc to pul>lisli or reproduce the published lbrm ofthis contribution, or to allow otliers lo do so, for U.S. Government purposes .Los Alainos Nalional Laboratory requcs:ts that the publisher identi€y this arlicle as work performed under the auspices ol'tlie 1J.S. Ikpartnient of'Energ Los Alauios Natiorial L:tborakiry strongly supports acadcmic freedom and a tesearclicr's rig111 to ~I I inslilution, bowcwr, the Latomlory does not cntlorse the viewpoint of a pnblicatinn or yuaraiilec its technical correctness. Form 83

    Meteors: A Delivery Mechanism of Organic Matter to The Early Earth

    No full text
    All potential exogenous pre-biotic matter arrived to Earth by ways of our atmosphere, where much material was ablated during a luminous phase called 1. meteors" in rarefied flows of high (up to 270) Mach number. The recent Leonid showers offered a first glimpse into the elusive physical conditions of the ablation process and atmospheric chemistry associated with high-speed meteors. Molecular emissions were detected that trace a meteor's brilliant light to a 4,300 K warm wake rather than to the meteor's head. A new theoretical approach using the direct simulation by Monte Carlo technique identified the source-region and demonstrated that the ablation process is critical in the heating of the meteor's wake. In the head of the meteor, organic carbon appears to survive flash heating and rapid cooling. The temperatures in the wake of the meteor are just right for dissociation of CO and the formation of more complex organic compounds. The resulting materials could account for the bulk of pre-biotic organic carbon on the early Earth at the time of the origin of life

    The NASA/Ames Mars General Circulation Model: Model Improvements and Comparison with Observations

    No full text
    For many years, the NASA/Ames Mars General Circulation Model (GCM) has been built around the UCLA B-grid dynamical core. An attached tracer transport scheme based on the aerosol microphysical model of Toon et al. (1988) provided a tool for studying dust storm transport and feedbacks (Murphy et al., 1995). While we still use a B-grid version of the model, the Ames group is now transitioning to the ARIES/GEOS Goddard C-grid dynamical core (Suarez and Takacs, 1995). The C-grid produces smoother fields when the model top is raised above 50 km, and has a built in transport scheme for an arbitrary number of tracers. All of our transport simulations are now carried out with the C-grid. We have also been updating our physics package. Several years ago we replaced our bulk boundary layer scheme with a level 2 type diffusive scheme, and added a multi-level soil model (Haberle et al., 2000). More recently we replaced our radiation code with a more generalized two-stream code that accounts for aerosol multiple scattering and gaseous absorption. This code gives us much more flexibility in choosing aerosol optical properties and radiatively active gases
    corecore