29 research outputs found

    High-Throughput Canopy and Belowground Phenotyping of a Set of Peanut CSSLs Detects Lines with Increased Pod Weight and Foliar Disease Tolerance

    Get PDF
    We deployed field-based high-throughput phenotyping (HTP) techniques to acquire trait data for a subset of a peanut chromosome segment substitution line (CSSL) population. Sensors mounted on an unmanned aerial vehicle (UAV) were used to derive various vegetative indices as well as canopy temperatures. A combination of aerial imaging and manual scoring showed that CSSL 100, CSSL 84, CSSL 111, and CSSL 15 had remarkably low tomato spotted wilt virus (TSWV) incidence, a devastating disease in South Georgia, USA. The four lines also performed well under leaf spot pressure. The vegetative indices showed strong correlations of up to 0.94 with visual disease scores, indicating that aerial phenotyping is a reliable way of selecting under disease pressure. Since the yield components of peanut are below the soil surface, we deployed ground penetrating radar (GPR) technology to detect pods non-destructively. Moderate correlations of up to 0.5 between pod weight and data acquired from GPR signals were observed. Both the manually acquired pod data and GPR variables highlighted the three lines, CSSL 84, CSSL 100, and CSSL 111, as the best-performing lines, with pod weights comparable to the cultivated check Tifguard. Through the combined application of manual and HTP techniques, this study reinforces the premise that chromosome segments from peanut wild relatives may be a potential source of valuable agronomic trait

    Genome‑wide association studies reveal novel loci for resistance to groundnut rosette disease in the African core groundnut collection

    Get PDF
    Groundnut is cultivated in several African countries where it is a major source of food, feed and income. One of the major constraints to groundnut production in Africa is groundnut rosette disease (GRD), which is caused by a complex of three agents: groundnut rosette assistor luteovirus, groundnut rosette umbravirus and its satellite RNA. Despite several years of breeding for GRD resistance, the genetics of the disease is not fully understood. The objective of the current study was to use the African core collection to establish the level of genetic variation in their response to GRD, and to map genomic regions responsible for the observed resistance. The African groundnut core genotypes were screened across two GRD hotspot locations in Uganda (Nakabango and Serere) for 3 seasons. The Area Under Disease Progress Curve combined with 7523 high quality SNPs were analyzed to establish marker-trait associations (MTAs). Genome-Wide Association Studies based on Enriched Compressed Mixed Linear Model detected 32 MTAs at Nakabango: 21 on chromosome A04, 10 on B04 and 1 on B08. Two of the significant markers were localised on the exons of a putative TIR-NBS-LRR disease resistance gene on chromosome A04. Our results suggest the likely involvement of major genes in the resistance to GRD but will need to be further validated with more comprehensive phenotypic and genotypic datasets. The markers identified in the current study will be developed into routine assays and validated for future genomics-assisted selection for GRD resistance in groundnut

    A reference microsatellite kit to assess for genetic diversity of Sorghum bicolor (Poaceae)

    Get PDF
    Premise of the study: Discrepancies in terms of genotyping data are frequently observed when comparing simple sequence repeat (SSR) data sets across genotyping technologies and laboratories. This technical concern introduces biases that hamper any synthetic studies or comparison of genetic diversity between collections. To prevent this for Sorghum bicolor, we developed a control kit of 48 SSR markers. ‱ Methods and Results: One hundred seventeen markers were selected along the genome to provide coverage across the length of all 10 sorghum linkage groups. They were tested for polymorphism and reproducibility across two laboratories (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement [CIRAD], France, and International Crops Research Institute for the Semi-Arid Tropics [ICRISAT], India) using two commonly used genotyping technologies (polyacrylamide gel–based technology with LI-COR sequencing machines and capillary systems with ABI sequencing apparatus) with DNA samples from a diverse set of 48 S. bicolor accessions. ‱ Conclusions: A kit for diversity analysis (http://sat.cirad.fr/sat/sorghum_SSR_kit/) was developed. It contains information on 48 technically robust sorghum microsatellite markers and 10 DNA controls. It can further be used to calibrate sorghum SSR genotyping data acquired with different technologies and compare those to genetic diversity reference

    Legacy genetics of Arachis cardenasii in the peanut crop shows the profound benefits of international seed exchange

    Get PDF
    A great challenge for humanity is feeding its growing population while minimizing ecosystem damage and climate change. Here, we uncover the global benefits arising from the introduction of one wild species accession to peanut-breeding programs decades ago. This work emphasizes the importance of biodiversity to crop improvement: peanut cultivars with genetics from this wild accession provided improved food security and reduced use of fungicide sprays. However, this study also highlights the perilous consequences of changes in legal frameworks and attitudes concerning biodiversity. These changes have greatly reduced the botanical collections, seed exchanges, and international collaborations which are essential for the continued diversification of crop genetics and, consequently, the long-term resilience of crops against evolving pests and pathogens and changing climate.The narrow genetics of most crops is a fundamental vulnerability to food security. This makes wild crop relatives a strategic resource of genetic diversity that can be used for crop improvement and adaptation to new agricultural challenges. Here, we uncover the contribution of one wild species accession, Arachis cardenasii GKP 10017, to the peanut crop (Arachis hypogaea) that was initiated by complex hybridizations in the 1960s and propagated by international seed exchange. However, until this study, the global scale of the dispersal of genetic contributions from this wild accession had been obscured by the multiple germplasm transfers, breeding cycles, and unrecorded genetic mixing between lineages that had occurred over the years. By genetic analysis and pedigree research, we identified A. cardenasii–enhanced, disease-resistant cultivars in Africa, Asia, Oceania, and the Americas. These cultivars provide widespread improved food security and environmental and economic benefits. This study emphasizes the importance of wild species and collaborative networks of international expertise for crop improvement. However, it also highlights the consequences of the implementation of a patchwork of restrictive national laws and sea changes in attitudes regarding germplasm that followed in the wake of the Convention on Biological Diversity. Today, the botanical collections and multiple seed exchanges which enable benefits such as those revealed by this study are drastically reduced. The research reported here underscores the vital importance of ready access to germplasm in ensuring long-term world food security.Genome sequence, genotyping, pedigree information, and yield trial data have been deposited in National Center for Biotechnology Information (NCBI), PeanutBase, and USDA Data Repository (NCBI: JADQCP000000000) (14). Datasets S1–S6 are available at USDA Ag Data Commons: https://data.nal.usda.gov/dataset/data-legacy-genetics-arachis-cardenasii-peanut-crop-v2 (17). All other study data are included in the article and/or supporting information

    FIDEL—a retrovirus-like retrotransposon and its distinct evolutionary histories in the A- and B-genome components of cultivated peanut

    Get PDF
    In this paper, we describe a Ty3-gypsy retrotransposon from allotetraploid peanut (Arachis hypogaea) and its putative diploid ancestors Arachis duranensis (A-genome) and Arachis ipaënsis (B-genome). The consensus sequence is 11,223 bp. The element, named FIDEL (Fairly long Inter-Dispersed Euchromatic LTR retrotransposon), is more frequent in the A- than in the B-genome, with copy numbers of about 3,000 (±950, A. duranensis), 820 (±480, A. ipaënsis), and 3,900 (±1,500, A. hypogaea) per haploid genome. Phylogenetic analysis of reverse transcriptase sequences showed distinct evolution of FIDEL in the ancestor species. Fluorescent in situ hybridization revealed disperse distribution in euchromatin and absence from centromeres, telomeric regions, and the nucleolar organizer region. Using paired sequences from bacterial artificial chromosomes, we showed that elements appear less likely to insert near conserved ancestral genes than near the fast evolving disease resistance gene homologs. Within the Ty3-gypsy elements, FIDEL is most closely related with the Athila/Calypso group of retrovirus-like retrotransposons. Putative transmembrane domains were identified, supporting the presence of a vestigial envelope gene. The results emphasize the importance of FIDEL in the evolution and divergence of different Arachis genomes and also may serve as an example of the role of retrotransposons in the evolution of legume genomes in general

    Groundnut

    Get PDF
    Groundnut, a crop rich in nutrients, originated in South America and spread to the rest of the world. Cultivated groundnut contains a fraction of the genetic diversity present in their closely related wild relatives, which is not more than 13 %, due to domestication bottleneck. Closely related ones are placed in section Arachis , which have not been extensively utilized until now due to ploidy differences between the cultivated and wild relatives. In order to overcome Arachis species utilization bottleneck, a large number of tetraploid synthetics were developed at the Legume Cell Biology Unit of Grain Legumes Program, ICRISAT, India. Evaluation of synthetics for some of the constraints showed that these were good sources of multiple disease and pest resistances. Some of the synthetics were utilized by developing ABQTL mapping populations, which were screened for some biotic and abiotic constraints. Phenotyping experiments showed ABQTL progeny lines with traits of interest necessary for the improvement of groundnut

    Translational Genomics to Reduce Pre‐harvest Aflatoxin Contamination of Peanut

    Get PDF
    Peanut/groundnut is a protein‐ and calorie‐rich subsistence and cash crop in Africa serving as an excellent source of human nutrition as well as for soil enrichment due to its symbiotic nitrogen fixing capacity. Much of the crop is grown by small‐holder farmers, frequently women. In the absence of severe disease pressure, haulms serve as livestock feed, thereby increasing the utility of the crop. Peanut yields are lower in Africa than in any other region of the world, and pod production is negatively impacted by many pests and diseases for which chemical control is not readily available. Apart from low yields, seed quality often declines under water deficit during maturation in part due to the incidence of aflatoxin contamination. Aflatoxin contamination of peanut is a global threat to human health that is largely controlled in developed countries by irrigation and post‐harvest sorting. Small‐holder farmers in developing and feed‐the‐future (FTF) countries lack water resources to reduce pre‐harvest aflatoxin contamination (PAC) through irrigation and encounter significant crop loss with post‐harvest sorting. Pre‐harvest aflatoxin contamination contributes to the potential for contamination to proliferate during post‐harvest storage under suboptimal conditions. While peanut is a highly nutritious addition to the diet, high levels of carcinogenic aflatoxin can have serious health consequences
    corecore