21 research outputs found

    Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in <it>in vivo </it>experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their <it>in vitro </it>complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II).</p> <p>Results</p> <p>New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (<b>1</b>) and [Pb(Sal)(NO<sub>3</sub>)] (<b>2</b>), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield <b>1</b>. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex <b>2 </b>consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation.</p> <p>Conclusion</p> <p>The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming.</p

    A Novel High Throughput Assay for Anthelmintic Drug Screening and Resistance Diagnosis by Real-Time Monitoring of Parasite Motility

    Get PDF
    Parasitic worms cause untold morbidity and mortality on billions of people and livestock. Drugs are available but resistance is problematic in livestock parasites and is a looming threat for human helminths. Currently, new drug discovery and resistance monitoring is hindered as drug efficacy is assessed by observing motility or development of parasites using laborious, subjective, low-throughput methods evaluated by eye using microscopy. Here we describe a novel application for a cell monitoring device (xCELLigence) that can simply and objectively assess real time anti-parasite efficacy of drugs on eggs, larvae and adults in a fully automated, label-free, high-throughput fashion. This technique overcomes the current low-throughput bottleneck in anthelmintic drug development and resistance detection pipelines. The widespread use of this device to screen for new therapeutics or emerging drug resistance will be an invaluable asset in the fight against human, animal and plant parasitic helminths and other pathogens that plague our planet

    The genetics of chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease caused by the interaction of genetic susceptibility and environmental influences. There is increasing evidence that genes link to disease pathogenesis and heterogeneity by causing variation in protease anti-protease systems, defence against oxidative stress and inflammation. The main methods of genomic research for complex disease traits are described, together with the genes implicated in COPD thus far, their roles in disease causation and the future for this area of investigation

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions

    Inhibition of natural killer cell activity by serum from patients with systemic lupus erythematosus: roles of disease activity and serum interferon.

    Get PDF
    Among their immunological alterations patients with systemic lupus erythematosus (SLE) have been shown to have diminished natural killer (NK) cell activity. This abnormality is at least in part related to humoral factors, as sera from patients with SLE can inhibit the NK activity of peripheral blood mononuclear cells from normal individuals. The present study extends these findings to demonstrate that the inhibitory ability of sera from patients with SLE varies with disease activity. Furthermore, sera from patients with active SLE containing interferon (IFN), a potent stimulator of NK activity, were equally or more inhibitory than sera which did not contain IFN. Thus the factors in SLE sera which can inhibit NK function vary with disease activity and cannot be overcome by IFN present in these sera
    corecore