75 research outputs found
Speakable in Quantum Mechanics
At the 1927 Como conference Bohr spoke the now famous words "It is wrong to
think that the task of physics is to find out how nature is. Physics concerns
what we can say about nature." However, if the Copenhagen interpretation really
holds on to this motto, why then is there this feeling of conflict when
comparing it with realist interpretations? Surely what one can say about nature
should in a certain sense be interpretation independent. In this paper I take
Bohr's motto seriously and develop a quantum logic that avoids assuming any
form of realism as much as possible. To illustrate the non-triviality of this
motto a similar result is first derived for classical mechanics. It turns out
that the logic for classical mechanics is a special case of the derived quantum
logic. Finally, some hints are provided in how these logics are to be used in
practical situations and I discuss how some realist interpretations relate to
these logics
Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity
In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity
A Forum for Business Growth and Workforce Development: Findings and Recommendations
In the fall of 2008, Illinois State University – Extended University (EU) and the Economic Development Council of the Bloomington-Normal Area (EDC) initiated discussions about a community partnership project to identify workforce opportunities and challenges related to economic stabilization and growth in order to gain a better understanding of the state of workforce preparedness in the area. Rapidly changing dynamics in the economy made previous assessments obsolete. Organizations who work toward the promotion of a strong workforce were approached to participate in the project. EU and the EDC were joined in sponsoring a community event by Heartland Community College, Illinois Wesleyan University, Lincoln College – Normal, Regional Office of Education 17, McLean County Chamber of Commerce, CareerLink 16, and the Small Business Development Center at Illinois State University.
Project partners designed and developed a series of discussion forums for eight sectors: Agriculture and Energy, Manufacturing, Small Business Retail, Service, Financial Services, Information Technology, Healthcare, and Construction. The Forum for Business Growth and Workforce Development was held from June 8 – 12, 2009 at Illinois State University. Each sector panel discussion was moderated over a ninety minute period and included two to seven panelists from area businesses
Physiological aspects of the determination of comprehensive arterial inflows in the lower abdomen assessed by Doppler ultrasound
Non-invasive measurement of splanchnic hemodynamics has been utilized in the clinical setting for diagnosis of gastro-intestinal disease, and for determining reserve blood flow (BF) distribution. However, previous studies that measured BF in a "single vessel with small size volume", such as the superior mesenteric and coeliac arteries, were concerned solely with the target organ in the gastrointestinal area, and therefore evaluation of alterations in these single arterial BFs under various states was sometimes limited to "small blood volumes", even though there was a relatively large change in flow. BF in the lower abdomen (BFAb) is potentially a useful indicator of the influence of comprehensive BF redistribution in cardiovascular and hepato-gastrointestinal disease, in the postprandial period, and in relation to physical exercise. BFAb can be determined theoretically using Doppler ultrasound by subtracting BF in the bilateral proximal femoral arteries (FAs) from BF in the upper abdominal aorta (Ao) above the coeliac trunk. Prior to acceptance of this method of determining a true BFAb value, it is necessary to obtain validated normal physiological data that represent the hemodynamic relationship between the three arteries. In determining BFAb, relative reliability was acceptably high (range in intra-class correlation coefficient: 0.85-0.97) for three arterial hemodynamic parameters (blood velocity, vessel diameter, and BF) in three repeated measurements obtained over three different days. Bland-Altman analysis of the three repeated measurements revealed that day-to-day physiological variation (potentially including measurement error) was within the acceptable minimum range (95% of confidence interval), calculated as the difference in hemodynamics between two measurements. Mean BF (ml/min) was 2951 ± 767 in Ao, 316 ± 97 in left FA, 313 ± 83 in right FA, and 2323 ± 703 in BFAb, which is in agreement with a previous study that measured the sum of BF in the major part of the coeliac, mesenteric, and renal arteries. This review presents the methodological concept that underlies BFAb, and aspects of its day-to-day relative reliability in terms of the hemodynamics of the three target arteries, relationship with body surface area, respiratory effects, and potential clinical usefulness and application, in relation to data previously reported in original dedicated research
Simulation modeling for stratified breast cancer screening : a systematic review of cost and quality of life assumptions
BACKGROUND: The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. METHODS: A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. RESULTS: Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. CONCLUSION: This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters
The many faces of biological individuality
Biological individuality is a major topic of discussion in biology and philosophy of biology. Recently, several objections have been raised against traditional accounts of biological individuality, including the objections of monism (the tendency to focus on a single individuality criterion and/or a single biological field), theory-centrism (the tendency to discuss only theory-based individuation), ahistoricity (the tendency to neglect what biologists of the past and historians of biology have said about biological individuality), disciplinary isolationism (the tendency to isolate biological individuality from other scientific and philosophical domains that have investigated individuality), and the multiplication of conceptual uncertainties (the lack of a precise definition of “biological individual” and related terms). In this introduction, I will examine the current philosophical landscape about biological individuality, and show how the contributions gathered in this special issue address these five objections. Overall, the aim of this issue is to offer a more diverse, unifying, and scientifically informed conception of what a biological individual is
Field‐Based Estimate of the Sediment Deficit in Coastal Louisiana
Coastal and deltaic sediment balances are crucial for a region’s sustainability. However, such balances remain difficult to quantify accurately, particularly for large regions. We calculate organic and mineral sediment mass and volume balances using field measurements from 273 Coastwide Reference Monitoring System sites across the Louisiana coast between 2006 and 2015. The rapid relative sea level rise rate (average 13.4 mm/yr) is offset by the small dry bulk densities observed (average 0.3 g/cm3) to produce a 16.2 ± 41.1% mass deficit and 24.1 ± 14.0% volume deficit, significantly smaller than recent predictions for 2000 – 2100 (73 to 79% mass deficit). Geostatisical estimates show that this deficit is primarily located in areas not directly nourished by major rivers, yet these regions still accumulate ~24 MT/yr of mineral sediment. A fluvial sediment discharge of 113.8 MT/yr suggests a coast-wide trapping efficiency of 31.5 ± 15.8% of the riverine sediment, excluding subaqueous deposition. Organic accumulation accounts for 30% of all volume accumulation during our study period and total organic mass accumulation per unit area is relatively constant in both directly and indirectly nourished regions. Sediment characteristics in the modern coastal wetlands differ from the Holocene deposit, suggesting secular changes within the system that will likely continue to influence coastal dynamics over the coming decades. Our results suggest that the gap between accommodation and accumulation (mass or volume) during this decade was not as large as the previously predicted century average
- …