44 research outputs found

    The Role of Oestrogen Receptor Beta (ERβ) in the Aetiology and Treatment of Type 2 Diabetes Mellitus

    Get PDF
    Introduction: Challenges facing the treatment of type 2 diabetes necessitate the search for agents which act via alternative pathways to provide better therapeutic outcomes. Recently, an increasing body of evidence implicates the activation of oestrogen receptors (ERα and ERβ) in the development and treatment of underlying conditions in type 2 diabetes. This article summarizes available evidence for the involvement of oestrogen receptors in insulin secretion, insulin resistance as well as glucose uptake and highlights the potential of ERβ as a therapeutic target. Background: Recent studies indicate an association between the activation of each of the isoforms of ER and recent findings indicate that ERβ shows promise as a potential target for antidiabetic drugs. In vitro and in vivo studies in receptor knockout mice indicate beneficial actions of selective agonists of ERβ receptor and underscore its therapeutic potential. Conclusion: Studies are needed to further elucidate the exact mechanism underlying the role of ERβ activation as a therapeutic approach in the management of type 2 diabetes

    Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799.

    No full text
    Amplification of the operon homdr-thrB encoding a feedback-insensitive homoserine dehydrogenase and a wild-type homoserine kinase in a Corynebacterium lactofermentum lysine-producing strain resulted in both homoserine and threonine accumulation, with some residual lysine production. A plasmid enabling separate transcriptional control of each gene was constructed to determine the effect of various enzyme activity ratios on metabolite accumulation. By increasing the activity of homoserine kinase relative to homoserine dehydrogenase activity, homoserine accumulation in the medium was essentially eliminated and the final threonine titer was increased by about 120%. Furthermore, a fortuitous result of the cloning strategy was an unexplained increase in homoserine dehydrogenase activity. This resulted in a further decrease in lysine production along with a concomitant increase in threonine accumulation

    Control of mammary tumor differentiation by SKI-606 (bosutinib)

    Get PDF
    C-Src is infrequently mutated in human cancers but it mediates oncogenic signals of many activated growth factor receptors and thus remains a key target for cancer therapy. However, the broad function of Src in many cell types and processes requires evaluation of Src-targeted therapeutics within a normal developmental and immune-competent environment. In an effort to understand the appropriate clinical use of Src inhibitors, we tested an Src inhibitor, SKI-606 (bosutinib), in the MMTV-PyVmT transgenic mouse model of breast cancer. Tumor formation in this model is dependent on the presence of Src, but the necessity of Src kinase activity for tumor formation has not been determined. Furthermore, Src inhibitors have not been examined in an autochthonous tumor model that permits assessment of effects on different stages of tumor progression. Here we show that oral administration of SKI-606 inhibited the phosphorylation of Src in mammary tumors and caused a rapid decrease in the Ezh2 Polycomb group histone H3K27 methyltransferase and an increase in epithelial organization. SKI-606 prevented the appearance of palpable tumors in over 50% of the animals and stopped tumor growth in older animals with pre-existing tumors. These antitumor effects were accompanied by decreased cellular proliferation, altered tumor blood vessel organization and dramatically increased differentiation to lactational and epidermal cell fates. SKI-606 controls the development of mammary tumors by inducing differentiation
    corecore