744 research outputs found

    Temperature transducer has high output, is time stable

    Get PDF
    Compact, lightweight temperature transducer requires no amplification of its output signal and is time stable. It uses the temperature-dependent characteristics of a silicon transistor to provide a zero-to-five-volt signal proportional to temperature

    Estimation of slow- and fast-cycling soil organic carbon pools from 6N HCI hydrolysis

    Get PDF
    Includes bibliographical references (pages 238-239).Acid hydrolysis is used to fractionate the soil organic carbon pool into relatively slow- and fast-cycling compartments on soils from Arizona, the Great Plains states and Michigan collected for carbon isotope tracer studies related to soil carbon sequestration, for studies of shifts in C3/C4 vegetation, and for "pre-bomb" soil-carbon inventories. Prior to hydrolysis, soil samples are first treated with cold 0.5-1N HCl to remove soil carbonates if necessary. Samples are then dispersed in a concentrated NaCI solution (p~1.2 g cm-3) and floated plant fragments are skimmed off the surface. After rinsing and drying, all remaining recognizable plant fragments are picked from the soil under 20x magnification. Plant-free soils, and hot, 6NHCl acid-hydrolysis residue and hydrolyzate fractions are analyzed for carbon content, δ 13C and 14C age, and the carbon distribution is verified within 1-2% by stable-carbon isotope mass balance. On average, the recalcitrant residue fraction is 1800 year older and 2.6‰ more 13C-depleted than total soil organic carbon. A test of hydrolysis with fresh plant fragments produced as much as 71-76% in the acid-hydrolysis residue pool. Thus, if plant fragments are not largely removed prior to hydrolysis, the residue fraction may date much younger than it actually is.Publisher version: https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/1903/1904

    Application of Optimization Techniques to Design of Unconventional Rocket Nozzle Configurations

    Get PDF
    Several current rocket engine concepts such as the bell-annular tri-propellant engine, and the linear aerospike being proposed for the X-33 require unconventional three dimensional rocket nozzles which must conform to rectangular or sector shaped envelopes to meet integration constraints. These types of nozzles exist outside the current experience database, therefore, the application of efficient design methods for these propulsion concepts is critical to the success of launch vehicle programs. The objective of this work is to optimize several different nozzle configurations, including two- and three-dimensional geometries. Methodology includes coupling computational fluid dynamic (CFD) analysis to genetic algorithms and Taguchi methods as well as implementation of a streamline tracing technique. Results of applications are shown for several geometeries including: three dimensional thruster nozzles with round or super elliptic throats and rectangualar exits, two- and three-dimensional thrusters installed within a bell nozzle, and three dimensional thrusters with round throats and sector shaped exits. Due to the novel designs considered for this study, there is little experience which can be used to guide the effort and limit the design space. With a nearly infinite parameter space to explore, simple parametric design studies cannot possibly search the entire design space within the time frame required to impact the design cycle. For this reason, robust and efficient optimization methods are required to explore and exploit the design space to achieve high performance engine designs. Five case studies which examine the application of various techniques in the engineering environment are presented in this paper

    Mapping of serotype-specific, immunodominant epitopes in the NS-4 region of hepatitis C virus (HCV):use of type-specific peptides to serologically differentiate infections with HCV types 1, 2, and 3

    Get PDF
    The effect of sequence variability between different types of hepatitis C virus (HCV) on the antigenicity of the NS-4 protein was investigated by epitope mapping and by enzyme-linked immunosorbent assay with branched oligopeptides. Epitope mapping of the region between amino acid residues 1679 and 1768 in the HCV polyprotein revealed two major antigenic regions (1961 to 1708 and 1710 to 1728) that were recognized by antibody elicited upon natural infection of HCV. The antigenic regions were highly variable between variants of HCV, with only 50 to 60% amino acid sequence similarity between types 1, 2, and 3. Although limited serological cross-reactivity between HCV types was detected between peptides, particularly in the first antigenic region of NS-4, type-specific reactivity formed the principal component of the natural humoral immune response to NS-4. Type-specific antibody to particular HCV types was detected in 89% of the samples from anti-HCV-positive blood donors and correlated almost exactly with genotypic analysis of HCV sequences amplified from the samples by polymerase chain reaction. Whereas almost all blood donors appeared to be infected with a single virus type (97%), a higher proportion of samples (40%) from hemophiliacs infected from transfusion of non-heat-inactivated clotting factor contained antibody to two or even all three HCV types, providing evidence that long-term exposure may lead to multiple infection with different variants of HCV

    Nontarget Effects—The Achilles’ Heel of Biological Control? Retrospective Analyses to Reduce Risk Associated with Biocontrol Introductions

    Get PDF
    Controversy exists over ecological risks in classical biological control. We reviewed 10 projects with quantitative data on nontarget effects. Ten patterns emerged: (a) Relatives of the pest are most likely to be attacked; (b) host-specificity testing defines physiological host range, but not ecological range; (c) prediction of ecological consequences requires population data; (d) level of impact varied, often in relation to environmental conditions; (e) information on magnitude of nontarget impact is sparse; ( f ) attack on rare native species can accelerate their decline; (g) nontarget effects can be indirect; (h) agents disperse from agroecosystems; (i) whole assemblages of species can be perturbed; and ( j ) no evidence on adaptation is available in these cases. The review leads to six recommendations: Avoid using generalists or adventive species; expand host-specificity testing; incorporate more ecological information; consider ecological risk in target selection; prioritize agents; and pursue genetic data on adaptation. We conclude that retrospective analyses suggest clear ways to further increase future safety of biocontrol

    Carbon isotope ratios of Great Plains soils and in wheat-fallow systems

    Get PDF
    Includes bibliographical references (pages 1076-1077).The purposes of this study were to improve knowledge of regional vegetation patterns of C3 and C4 plants in the North American Great Plains and to use δ13C methodology and long-term research sites to determine contributions of small-grain crops to total soil organic carbon (SOC) now present. Archived and recent soil samples were used. Detailed soil sampling was in 1993 at long-term sites near Akron, CO, and Sidney, NE. After soil sieving, drying, and deliming, SOC and δ13C were determined using an automated C/N analyzer interfaced to an isotope-ratio mass spectrometer. Yield records from long-term experimental sites were used to estimate the amount of C3 plant residue C returned to the soil. Results from δ13C analyses of soils from near Waldheim, Saskatchewan, to Big Springs, TX, showed a strong north to south decrease in SOC derived from C3 plants and a corresponding increase from C4 plants. The δ13C analyses gave evidence that C3 plant residue C (possibly from shrubs) is increasing at the Big Springs, TX, and Lawton, OK, sites. Also, δ13C analyses of subsoil and topsoil layers shows evidence of a regional shift to more C3 species, possibly because of a cooler climate during the past few hundreds to thousands of years. Data from long-term research sites indicate that the efficiency of incorporation of small-grain crop residue C was about 5.4% during 84 year at Akron, CO, and about 10.5% during 20 year at Sidney, NE. The 14C age of the SOC at 0- to 10-cm depth was 193 year and at 30 to 45 cm was 4000 yr; 14C age of nonhydrolyzable C was 2000 and 7000 year for these same two respective depths. Natural partitioning of the 13C isotope by the photosynthetic pathways of C3 and C4 plants provides a potentially powerful tool to study SOC dynamics at both regional and local scales

    Closely related phytoplankton species produce similar suites of dissolved organic matter

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 111, doi:10.3389/fmicb.2014.00111.Production of dissolved organic matter (DOM) by marine phytoplankton supplies the majority of organic substrate consumed by heterotrophic bacterioplankton in the sea. This production and subsequent consumption converts a vast quantity of carbon, nitrogen, and phosphorus between organic and inorganic forms, directly impacting global cycles of these biologically important elements. Details regarding the chemical composition of DOM produced by marine phytoplankton are sparse, and while often assumed, it is not currently known if phylogenetically distinct groups of marine phytoplankton release characteristic suites of DOM. To investigate the relationship between specific phytoplankton groups and the DOM they release, hydrophobic phytoplankton-derived dissolved organic matter (DOMP) from eight axenic strains was analyzed using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Identification of DOM features derived from Prochlorococcus, Synechococcus, Thalassiosira, and Phaeodactylum revealed DOMP to be complex and highly strain dependent. Connections between DOMP features and the phylogenetic relatedness of these strains were identified on multiple levels of phylogenetic distance, suggesting that marine phytoplankton produce DOM that in part reflects its phylogenetic origin. Chemical information regarding the size and polarity ranges of features from defined biological sources was also obtained. Our findings reveal DOMP composition to be partially conserved among related phytoplankton species, and implicate marine DOM as a potential factor influencing microbial diversity in the sea by acting as a link between autotrophic and heterotrophic microbial community structures.This research was supported by grants to Daniel J. Repeta and Sallie W. Chisholm from the Gordon and Betty Moore Foundation and funding to Daniel J. Repeta, Edward F. DeLong, and Sallie W. Chisholm from the National Science Foundation Science and Technology Center Award 0424599
    corecore