782 research outputs found

    Development of improved structural adhesives Annual summary report, 1 Jul. 1967 - 3 Dec. 1968

    Get PDF
    Improved structural adhesives for bonding aluminum over low temperature

    Estimation of slow- and fast-cycling soil organic carbon pools from 6N HCI hydrolysis

    Get PDF
    Includes bibliographical references (pages 238-239).Acid hydrolysis is used to fractionate the soil organic carbon pool into relatively slow- and fast-cycling compartments on soils from Arizona, the Great Plains states and Michigan collected for carbon isotope tracer studies related to soil carbon sequestration, for studies of shifts in C3/C4 vegetation, and for "pre-bomb" soil-carbon inventories. Prior to hydrolysis, soil samples are first treated with cold 0.5-1N HCl to remove soil carbonates if necessary. Samples are then dispersed in a concentrated NaCI solution (p~1.2 g cm-3) and floated plant fragments are skimmed off the surface. After rinsing and drying, all remaining recognizable plant fragments are picked from the soil under 20x magnification. Plant-free soils, and hot, 6NHCl acid-hydrolysis residue and hydrolyzate fractions are analyzed for carbon content, δ 13C and 14C age, and the carbon distribution is verified within 1-2% by stable-carbon isotope mass balance. On average, the recalcitrant residue fraction is 1800 year older and 2.6‰ more 13C-depleted than total soil organic carbon. A test of hydrolysis with fresh plant fragments produced as much as 71-76% in the acid-hydrolysis residue pool. Thus, if plant fragments are not largely removed prior to hydrolysis, the residue fraction may date much younger than it actually is.Publisher version: https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/1903/1904

    Post-harvest entomology research in the United States Department of Agriculture–Agricultural Research Service

    Get PDF
    This is a review of current post-harvest entomology research conducted by the Agricultural Research Service, the research branch of the US Department of Agriculture. The review covers both durable and perishable commodities. Research on biochemistry, genetics, physiology, monitoring and control of insects infesting stored grain, dried fruits and nuts, and processed commodities is reviewed. Research on development of quarantine treatments, particularly for fruit flies, is also reviewed, including research on thermal and irradiation treatments and a discussion of risk management for quarantine pests. Two areas of research are covered more extensively: a project to map the genome of the red flour beetle, Tribolium castaneum, and the use of near-infrared spectroscopy for detection of hidden infestations in grain, quantification of insect fragments in food, determination of quality in dried fruits, identification of insect species and age-grading insects. Future research directions are identified

    Post-harvest entomology research in the United States Department of Agriculture–Agricultural Research Service

    Get PDF
    This is a review of current post-harvest entomology research conducted by the Agricultural Research Service, the research branch of the US Department of Agriculture. The review covers both durable and perishable commodities. Research on biochemistry, genetics, physiology, monitoring and control of insects infesting stored grain, dried fruits and nuts, and processed commodities is reviewed. Research on development of quarantine treatments, particularly for fruit flies, is also reviewed, including research on thermal and irradiation treatments and a discussion of risk management for quarantine pests. Two areas of research are covered more extensively: a project to map the genome of the red flour beetle, Tribolium castaneum, and the use of near-infrared spectroscopy for detection of hidden infestations in grain, quantification of insect fragments in food, determination of quality in dried fruits, identification of insect species and age-grading insects. Future research directions are identified

    Mapping of serotype-specific, immunodominant epitopes in the NS-4 region of hepatitis C virus (HCV):use of type-specific peptides to serologically differentiate infections with HCV types 1, 2, and 3

    Get PDF
    The effect of sequence variability between different types of hepatitis C virus (HCV) on the antigenicity of the NS-4 protein was investigated by epitope mapping and by enzyme-linked immunosorbent assay with branched oligopeptides. Epitope mapping of the region between amino acid residues 1679 and 1768 in the HCV polyprotein revealed two major antigenic regions (1961 to 1708 and 1710 to 1728) that were recognized by antibody elicited upon natural infection of HCV. The antigenic regions were highly variable between variants of HCV, with only 50 to 60% amino acid sequence similarity between types 1, 2, and 3. Although limited serological cross-reactivity between HCV types was detected between peptides, particularly in the first antigenic region of NS-4, type-specific reactivity formed the principal component of the natural humoral immune response to NS-4. Type-specific antibody to particular HCV types was detected in 89% of the samples from anti-HCV-positive blood donors and correlated almost exactly with genotypic analysis of HCV sequences amplified from the samples by polymerase chain reaction. Whereas almost all blood donors appeared to be infected with a single virus type (97%), a higher proportion of samples (40%) from hemophiliacs infected from transfusion of non-heat-inactivated clotting factor contained antibody to two or even all three HCV types, providing evidence that long-term exposure may lead to multiple infection with different variants of HCV

    Tracking Cyber Adversaries with Adaptive Indicators of Compromise

    Full text link
    A forensics investigation after a breach often uncovers network and host indicators of compromise (IOCs) that can be deployed to sensors to allow early detection of the adversary in the future. Over time, the adversary will change tactics, techniques, and procedures (TTPs), which will also change the data generated. If the IOCs are not kept up-to-date with the adversary's new TTPs, the adversary will no longer be detected once all of the IOCs become invalid. Tracking the Known (TTK) is the problem of keeping IOCs, in this case regular expressions (regexes), up-to-date with a dynamic adversary. Our framework solves the TTK problem in an automated, cyclic fashion to bracket a previously discovered adversary. This tracking is accomplished through a data-driven approach of self-adapting a given model based on its own detection capabilities. In our initial experiments, we found that the true positive rate (TPR) of the adaptive solution degrades much less significantly over time than the naive solution, suggesting that self-updating the model allows the continued detection of positives (i.e., adversaries). The cost for this performance is in the false positive rate (FPR), which increases over time for the adaptive solution, but remains constant for the naive solution. However, the difference in overall detection performance, as measured by the area under the curve (AUC), between the two methods is negligible. This result suggests that self-updating the model over time should be done in practice to continue to detect known, evolving adversaries.Comment: This was presented at the 4th Annual Conf. on Computational Science & Computational Intelligence (CSCI'17) held Dec 14-16, 2017 in Las Vegas, Nevada, US

    Application of silicon ameliorated salinity stress and improved wheat yield

    Get PDF
    Management of soil salinity is an important research field around the globe, especially when associated with the limited water resources. This work aimed to improve the growth and yield of wheat (Triticum aestivum L. CV. Sakha-93) grown under salinity stress. A completely randomized design pot experiment with three replications was conducted in a loamy soil with various levels of salinity under local weather conditions. The treatments included five levels of salinity (2.74, 5.96, 8.85, 10.74, and 13.38 dSm-1) prepared by adding NaCl to the selected soil and five treatments of Si (0, 2.1, 4.2, 6.3, and 8.4 mg Si/10 plants). Silicon was applied to wheat plants as a foliar spray 30, 45, and 60 days after sowing. Results indicated that photosynthetic pigments; N, P, and K concentrations; biomass, and grain yield significantly decreased with increasing salinity concentration. For example, in the pots treated with Si rate of 0.0 mg Si/10 plants, biomass and grain yield significantly decreased by 37 and 30%, respectively, as salinity increased from 2.74 to 13.38 dSm-1. However, Na and proline concentrations increased with the increase in salinity. Supplying Si alleviated salinity stress and enhanced plant growth, e.g., at salinity concentration of 5.96 dSm-1, biomass and grain yield increased by 32 and 54%, respectively, when Si rate increased from 0.0 to 6.3 mg Si/10 plants. Similarly, under the same previous salinity and Si treatments, Na and proline concentrations decreased by 10 and 23%, respectively. Eventually, application of Si to wheat enhanced its growth and yield under salinity stress

    Impacts of warming and elevated CO\u3csub\u3e2\u3c/sub\u3e on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time

    Get PDF
    It is unclear how elevated CO2 (eCO2) and the corresponding shifts in temperature and precipitation will interact to impact ecosystems over time. During a 7-year experiment in a semi-arid grassland, the response of plant biomass to eCO2 and warming was largely regulated by interannual precipitation, while the response of plant community composition was more sensitive to experiment duration. The combined effects of eCO2 and warming on aboveground plant biomass were less positive in ‘wet’ growing seasons, but total plant biomass was consistently stimulated by ~ 25% due to unique, supra-additive responses of roots. Independent of precipitation, the combined effects of eCO2 and warming on C3 graminoids became increasingly positive and supraadditive over time, reversing an initial shift toward C4 grasses. Soil resources also responded dynamically and non-additively to eCO2 and warming, shaping the plant responses. Our results suggest grasslands are poised for drastic changes in function and highlight the need for long-term, factorial experiments

    Multidisciplinary Approach to Aerospike Nozzle Design

    Get PDF
    A model of a linear aerospike rocket nozzle that consists of coupled aerodynamic and structural analyses has been developed. A nonlinear computational fluid dynamics code is used to calculate the aerodynamic thrust, and a three-dimensional finite-element model is used to determine the structural response and weight. The model will be used to demonstrate multidisciplinary design optimization (MDO) capabilities for relevant engine concepts, assess performance of various MDO approaches, and provide a guide for future application development. In this study, the MDO problem is formulated using the multidisciplinary feasible (MDF) strategy. The results for the MDF formulation are presented with comparisons against separate aerodynamic and structural optimized designs. Significant improvements are demonstrated by using a multidisciplinary approach in comparison with the single-discipline design strategy
    • …
    corecore