732 research outputs found

    Classical limit of the quantum Zeno effect

    Full text link
    The evolution of a quantum system subjected to infinitely many measurements in a finite time interval is confined in a proper subspace of the Hilbert space. This phenomenon is called "quantum Zeno effect": a particle under intensive observation does not evolve. This effect is at variance with the classical evolution, which obviously is not affected by any observations. By a semiclassical analysis we will show that the quantum Zeno effect vanishes at all orders, when the Planck constant tends to zero, and thus it is a purely quantum phenomenon without classical analog, at the same level of tunneling.Comment: 10 pages, 2 figure

    Localization of quantum wave packets

    Full text link
    We study the semiclassical propagation of squeezed Gau{\ss}ian states. We do so by considering the propagation theorem introduced by Combescure and Robert \cite{CR97} approximating the evolution generated by the Weyl-quantization of symbols HH. We examine the particular case when the Hessian H(Xt)H^{\prime\prime}(X_{t}) evaluated at the corresponding solution XtX_{t} of Hamilton's equations of motion is periodic in time. Under this assumption, we show that the width of the wave packet can remain small up to the Ehrenfest time. We also determine conditions for ``classical revivals'' in that case. More generally, we may define recurrences of the initial width. Some of these results include the case of unbounded classical motion. In the classically unstable case we recover an exponential spreading of the wave packet as in \cite{CR97}

    Geometric realizations of generalized algebraic curvature operators

    Full text link
    We study the 8 natural GL equivariant geometric realization questions for the space of generalized algebraic curvature tensors. All but one of them is solvable; a non-zero projectively flat Ricci antisymmetric generalized algebraic curvature is not geometrically realizable by a projectively flat Ricci antisymmetric torsion free connection

    On transversally elliptic operators and the quantization of manifolds with ff-structure

    Full text link
    An ff-structure on a manifold MM is an endomorphism field \phi\in\Gamma(M,\End(TM)) such that ϕ3+ϕ=0\phi^3+\phi=0. Any ff-structure ϕ\phi determines an almost CR structure E_{1,0}\subset T_\C M given by the +i+i-eigenbundle of ϕ\phi. Using a compatible metric gg and connection \nabla on MM, we construct an odd first-order differential operator DD, acting on sections of §=ΛE0,1\S=\Lambda E_{0,1}^*, whose principal symbol is of the type considered in arXiv:0810.0338. In the special case of a CR-integrable almost §\S-structure, we show that when \nabla is the generalized Tanaka-Webster connection of Lotta and Pastore, the operator DD is given by D = \sqrt{2}(\dbbar+\dbbar^*), where \dbbar is the tangential Cauchy-Riemann operator. We then describe two "quantizations" of manifolds with ff-structure that reduce to familiar methods in symplectic geometry in the case that ϕ\phi is a compatible almost complex structure, and to the contact quantization defined in \cite{F4} when ϕ\phi comes from a contact metric structure. The first is an index-theoretic approach involving the operator DD; for certain group actions DD will be transversally elliptic, and using the results in arXiv:0810.0338, we can give a Riemann-Roch type formula for its index. The second approach uses an analogue of the polarized sections of a prequantum line bundle, with a CR structure playing the role of a complex polarization.Comment: 31 page

    Semiclassical measures and the Schroedinger flow on Riemannian manifolds

    Full text link
    In this article we study limits of Wigner distributions (the so-called semiclassical measures) corresponding to sequences of solutions to the semiclassical Schroedinger equation at times scales αh\alpha_{h} tending to infinity as the semiclassical parameter hh tends to zero (when αh=1/h\alpha _{h}=1/h this is equivalent to consider solutions to the non-semiclassical Schreodinger equation). Some general results are presented, among which a weak version of Egorov's theorem that holds in this setting. A complete characterization is given for the Euclidean space and Zoll manifolds (that is, manifolds with periodic geodesic flow) via averaging formulae relating the semiclassical measures corresponding to the evolution to those of the initial states. The case of the flat torus is also addressed; it is shown that non-classical behavior may occur when energy concentrates on resonant frequencies. Moreover, we present an example showing that the semiclassical measures associated to a sequence of states no longer determines those of their evolutions. Finally, some results concerning the equation with a potential are presented.Comment: 18 pages; Theorems 1,2 extendend to deal with arbitrary time-scales; references adde

    Harnack inequality for fractional sub-Laplacians in Carnot groups

    Full text link
    In this paper we prove an invariant Harnack inequality on Carnot-Carath\'eodory balls for fractional powers of sub-Laplacians in Carnot groups. The proof relies on an "abstract" formulation of a technique recently introduced by Caffarelli and Silvestre. In addition, we write explicitly the Poisson kernel for a class of degenerate subelliptic equations in product-type Carnot groups

    The Reliability of Global and Hemispheric Surface Temperature Records

    Get PDF
    The purpose of this review article is to discuss the development and associated estimation of uncertainties in the global and hemispheric surface temperature records. The review begins by detailing the groups that produce surface temperature datasets. After discussing the reasons for similarities and differences between the various products, the main issues that must be addressed when deriving accurate estimates, particularly for hemispheric and global averages, are then considered. These issues are discussed in the order of their importance for temperature records at these spatial scales: biases in SST data, particularly before the 1940s; the exposure of land-based thermometers before the development of louvred screens in the late 19th century; and urbanization effects in some regions in recent decades. The homogeneity of land-based records is also discussed; however, at these large scales it is relatively unimportant. The article concludes by illustrating hemispheric and global temperature records from the four groups that produce series in near-real time
    corecore