16 research outputs found

    Influences of obese (ob/ob) and diabetes (db/db) genotype mutations on lumber vertebral radiological and morphometric indices: Skeletal deformation associated with dysregulated systemic glucometabolism

    Get PDF
    BACKGROUND: Both diabetes and obesity syndromes are recognized to promote lumbar vertebral instability, premature osteodegeneration, exacerbate progressive osteoporosis and increase the propensity towards vertebral degeneration, instability and deformation in humans. METHODS: The influences of single-gene missense mutations, expressing either diabetes (db/db) or obese (ob/ob) metabolic syndromes on vertebral maturation and development in C57BL/KsJ mice were evaluated by radiological and macro-morphometric analysis of the resulting variances in osteodevelopment indices relative to control parameters between 8 and 16 weeks of age (syndrome onset @ 4 weeks), and the influences of low-dose 17-B-estradiol therapy on vertebral growth expression evaluated. RESULTS: Associated with the indicative genotypic obesity and hyper-glycemic/-insulinemic states, both db/db and ob/ob mutants demonstrated a significant (P ≤ 0.05) elongation of total lumbar vertebrae column (VC) regional length, and individual lumbar vertebrae (LV1-5) lengths, relative to control VC and LV parameters. In contrast, LV1-5 width indices were suppressed in db/db and ob/ob mutants relative to control LV growth rates. Between 8 and 16 weeks of age, the suppressed LV1-5 width indices were sustained in both genotype mutant groups relative to control osteomaturation rates. The severity of LV1-5 width osteosuppression correlated with the severe systemic hyperglycemic and hypertriglyceridemic conditions sustained in ob/ob and db/db mutants. Low-dose 17-B-estradiol therapy (E2-HRx: 1.0 ug/ 0.1 ml oil s.c/3.5 days), initiated at 4 weeks of age (i.e., initial onset phase of db/db and ob/ob expressions) re-established control LV 1–5 width indices without influencing VC or LV lengths in db/db groups. CONCLUSION: These data demonstrate that the abnormal systemic endometabolic states associated with the expression of db/db and ob/ob genomutation syndromes suppress LV 1–5 width osteomaturation rates, but enhanced development related VC and LV length expression, relative to control indices in a progressive manner similar to recognized human metabolic syndrome conditions. Therapeutic E2 modulation of the hyperglycemic component of diabetes-obesity syndrome protected the regional LV from the mutation-induced osteopenic width-growth suppression. These data suggest that these genotype mutation models may prove valuable for the evaluation of therapeutic methodologies suitable for the treatment of human diabetes- or obesity-influenced, LV degeneration-linked human conditions, which demonstrate amelioration from conventional replacement therapies following diagnosis of systemic syndrome-induced LV osteomaturation-associated deformations

    Consistency of impact assessment protocols for non-native species

    Get PDF
    Standardized tools are needed to identify and prioritize the most harmful non-native species (NNS). A plethora of assessment protocols have been developed to evaluate the current and potential impacts of non-native species, but consistency among them has received limited attention. To estimate the consistency across impact assessment protocols, 89 specialists in biological invasions used 11 protocols to screen 57 NNS (2614 assessments). We tested if the consistency in the impact scoring across assessors, quantified as the coefficient of variation (CV), was dependent on the characteristics of the protocol, the taxonomic group and the expertise of the assessor. Mean CV across assessors was 40%, with a maximum of 223%. CV was lower for protocols with a low number of score levels, which demanded high levels of expertise, and when the assessors had greater expertise on the assessed species. The similarity among protocols with respect to the final scores was higher when the protocols considered the same impact types. We conclude that all protocols led to considerable inconsistency among assessors. In order to improve consistency, we highlight the importance of selecting assessors with high expertise, providing clear guidelines and adequate training but also deriving final decisions collaboratively by consensus

    Delayed Fracture Healing and Increased Callus Adiposity in a C57BL/6J Murine Model of Obesity-Associated Type 2 Diabetes Mellitus

    Get PDF
    INTRODUCTION: Impaired healing and non-union of skeletal fractures is a major public health problem, with morbidity exacerbated in patients with diabetes mellitus (DM). DM is prevalent worldwide and affects approximately 25.8 million US adults, with >90% having obesity-related type 2 DM (T2DM). While fracture healing in type 1 DM (T1DM) has been studied using animal models, an investigation into delayed healing in an animal model of T2DM has not yet been performed. METHODS: Male C57BL/6J mice at 5 weeks of age were placed on either a control lean diet or an experimental high-fat diet (HFD) for 12 weeks. A mid-diaphyseal open tibia fracture was induced at 17 weeks of age and a spinal needle was used for intra-medullary fixation. Mice were sacrificed at days 7, 10, 14, 21, 28, and 35 for micro-computed tomography (μCT), histology-based histomorphometry and molecular analyses, and biomechanical testing. RESULTS: HFD-fed mice displayed increased body weight and impaired glucose tolerance, both characteristic of T2DM. Compared to control mice, HFD-fed mice with tibia fractures showed significantly (p<0.001) decreased woven bone at day 28 by histomorphometry and significantly (p<0.01) decreased callus bone volume at day 21 by μCT. Interestingly, fracture calluses contained markedly increased adiposity in HFD-fed mice at days 21, 28, and 35. HFD-fed mice also showed increased PPARγ immunohistochemical staining at day 14. Finally, calluses from HFD-fed mice at day 35 showed significantly (p<0.01) reduced torsional rigidity compared to controls. DISCUSSION: Our murine model of T2DM demonstrated delayed fracture healing and weakened biomechanical properties, and was distinctly characterized by increased callus adiposity. This suggests altered mesenchymal stem cell fate determination with a shift to the adipocyte lineage at the expense of the osteoblast lineage. The up-regulation of PPARγ in fracture calluses of HFD-fed mice is likely involved in the proposed fate switching

    A. Sprachwissenschaft und Kulturgeschichte im Allgemeinen.

    No full text

    Influence of Streptozotocin-induced Diabetes on New Bone Formation by rhBMP-2

    No full text
    corecore