713 research outputs found

    Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents

    Get PDF
    The effect of the introduction of specific adsorbents on the gas separation properties of polymeric membranes has been studied. For this purpose both carbon molecular sieves and zeolites are considered. The results show that zeolites such as silicate-1, 13X and KY improve to a large extent the separation properties of poorly selective rubbery polymers towards a mixture of carbon dioxide/methane. Some of the filled rubbery polymers achieve intrinsic separation properties comparable to cellulose acetate, polysulfone or polyethersulfone. However, zeolite 5A leads to a decrease in permeability and an unchanged selectivity. This is due to the impermeable character of these particles, i.e. carbon dioxide molecules cannot diffuse through the porous structure under the conditions applied. Using silicate-1 also results in an improvement of the oxygen/nitrogen separation properties which is mainly due to a kinetic effect. Carbon molecular sieves do not improve the separation performances or only to a very small extent. This is caused by a mainly dead-end (not interconnected) porous structure which is inherent to their manufacturing process

    Preparation of zeolite filled glassy polymer membranes

    Get PDF
    The incorporation of zeolite particles in the micrometer range into polymeric matrices was investigated as a way to improve the gas separation properties of the polymer materials used in the form of membranes. The adhesion between the polymer phase and the external surface of the particles appeared to be a major problem in the preparation of such membranes when the polymer is in the glassy state at room temperature. Various methods were investigated to improve the internal membrane structure, that is, surface modification of the zeolite external surface, preparation above the glass-transition temperature, and heat treatment. Improved structures were obtained as observed by scanning electron microscopy, but the influence on the gas separation properties was not in agreement with the observed structural improvements

    Single-strand DNA Binding by the Helix-Hairpin-Helix Domain of XPF Contributes to Substrate Specificity of ERCC1-XPF

    Get PDF
    The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble
    corecore