2,628 research outputs found

    Helmholtz decomposition theorem and Blumenthal's extension by regularization

    Full text link
    Helmholtz decomposition theorem for vector fields is usually presented with too strong restrictions on the fields and only for time independent fields. Blumenthal showed in 1905 that decomposition is possible for any asymptotically weakly decreasing vector field. He used a regularization method in his proof which can be extended to prove the theorem even for vector fields asymptotically increasing sublinearly. Blumenthal's result is then applied to the time-dependent fields of the dipole radiation and an artificial sublinearly increasing field.Comment: 11 pages. arXiv admin note: text overlap with arXiv:1506.0023

    Biconical critical dynamics

    Full text link
    A complete two loop renormalization group calculation of the multicritical dynamics at a tetracritical or bicritical point in anisotropic antiferromagnets in an external magnetic field is performed. Although strong scaling for the two order parameters (OPs) perpendicular and parallel to the field is restored as found earlier, in the experimentally accessible region the effective dynamical exponents for the relaxation of the OPs remain different since their equal asymptotic values are not reached.Comment: 6 pages, 2 figures; some additions, corrected typo

    Phase Transition in the Random Anisotropy Model

    Full text link
    The influence of a local anisotropy of random orientation on a ferromagnetic phase transition is studied for two cases of anisotropy axis distribution. To this end a model of a random anisotropy magnet is analyzed by means of the field theoretical renormalization group approach in two loop approximation refined by a resummation of the asymptotic series. The one-loop result of Aharony indicating the absence of a second-order phase transition for an isotropic distribution of random anisotropy axis at space dimension d<4d<4 is corroborated. For a cubic distribution the accessible stable fixed point leads to disordered Ising-like critical exponents.Comment: 10 pages, 2 latex figures and a style file include

    Critical light scattering in liquids

    Full text link
    We compare theoretical results for the characteristic frequency of the Rayleigh peak calculated in one-loop order within the field theoretical method of the renormalization group theory with experiments and other theoretical results. Our expressions describe the non-asymptotic crossover in temperature, density and wave vector. In addition we discuss the frequency dependent shear viscosity evaluated within the same model and compare our theoretical results with recent experiments in microgravity.Comment: 17 pages, 12 figure

    Critical slowing down in random anisotropy magnets

    Get PDF
    We study the purely relaxational critical dynamics with non-conserved order parameter (model A critical dynamics) for three-dimensional magnets with disorder in a form of the random anisotropy axis. For the random axis anisotropic distribution, the static asymptotic critical behaviour coincides with that of random site Ising systems. Therefore the asymptotic critical dynamics is governed by the dynamical exponent of the random Ising model. However, the disorder influences considerably the dynamical behaviour in the non-asymptotic regime. We perform a field-theoretical renormalization group analysis within the minimal subtraction scheme in two-loop approximation to investigate asymptotic and effective critical dynamics of random anisotropy systems. The results demonstrate the non-monotonic behaviour of the dynamical effective critical exponent zeffz_{\rm eff}.Comment: 11 pages, 4 figures, style file include

    Entropic equation of state and scaling functions near the critical point in scale-free networks

    Get PDF
    We analyze the entropic equation of state for a many-particle interacting system in a scale-free network. The analysis is performed in terms of scaling functions which are of fundamental interest in the theory of critical phenomena and have previously been theoretically and experimentally explored in the context of various magnetic, fluid, and superconducting systems in two and three dimensions. Here, we obtain general scaling functions for the entropy, the constant-field heat capacity, and the isothermal magnetocaloric coefficient near the critical point in scale-free networks, where the node-degree distribution exponent λ\lambda appears to be a global variable and plays a crucial role, similar to the dimensionality dd for systems on lattices. This extends the principle of universality to systems on scale-free networks and allows quantification of the impact of fluctuations in the network structure on critical behavior.Comment: 8 pages, 4 figure
    corecore