245 research outputs found

    Investigation of Anaplasma marginale Seroprevalence in a Traditionally Managed Large California Beef Herd.

    Get PDF
    Recent observations by stakeholders suggested that ecosystem changes may be driving an increased incidence of bovine erythrocytic anaplasmosis, resulting in a reemerging cattle disease in California. The objective of this prospective cohort study was to estimate the incidence of Anaplasma marginale infection using seroconversion in a northern California beef cattle herd. A total of 143 Black Angus cattle (106 prebreeding heifers and 37 cows) were enrolled in the study. Serum samples were collected to determine Anaplasma marginale seroprevalence using a commercially available competitive enzyme-linked immunosorbent assay test kit. Repeat sampling was performed in seronegative animals to determine the incidence density rate from March through September (2013). Seroprevalence of heifers was significantly lower than that of cows at the beginning of the study (P < 0.001) but not at study completion (P = 0.075). Incidence density rate of Anaplasma marginale infection was 8.17 (95% confidence interval: 6.04, 10.81) cases per 1000 cow-days during the study period. Study cattle became Anaplasma marginale seropositive and likely carriers protected from severe clinical disease that might have occurred had they been first infected as mature adults. No evidence was found within this herd to suggest increased risk for clinical bovine erythrocytic anaplasmosis

    Antigen Diversity in the Parasitic Bacterium Anaplasma phagocytophilum Arises from Selectively-Represented, Spatially Clustered Functional Pseudogenes

    Get PDF
    Anaplasma phagocytophilum is a tick-transmitted bacterial pathogen of humans and other animals, and is an obligate intracellular parasite. Throughout the course of infection, hosts acquire temporary resistance to granulocytic anaplasmosis as they develop immunity specific for the major antigen, major surface protein 2 (Msp2). However, the bacterium then utilizes a novel recombination mechanism shuffling functional pseudogenes sequentially into an expression cassette with conserved 5′ and 3′ ends, bypassing host immunity. Approximately 100 pseudogenes are present in the only fully sequenced human-origin HZ genome, representing the possibility for almost unlimited antigenic diversity. In the present study, we identified a select group of 20% of the A. phagocytophilum HZ msp2 pseudogenes that have matched preferentially to human, canine, and equine expression cassettes. Pseudogenes cluster predominantly in one spatial run limited to a single genomic island in less than 50% of the genome but phylogenetically related pseudogenes are neither necessarily located in close proximity on the genome nor share similar percent identity with expression cassettes. Pseudogenes near the expression cassette (and the origin) are more likely to be expressed than those farther away. Taken together, these findings suggest that there may be natural selection pressure to retain pseudogenes in one cluster near the putative origin of replication, even though global recombination shuffles pseudogenes around the genome, separating pseudogenes that share genetic origins as well as those with similar identities

    Monitoring of Nesting Songbirds Detects Established Population of Blacklegged Ticks and Associated Lyme Disease Endemic Area in Canada.

    Get PDF
    This study provides a novel method of documenting established populations of bird-feeding ticks. Single populations of the blacklegged tick, Ixodes scapularis, and the rabbit tick, Haemaphysalis leporispalustris, were revealed in southwestern Québec, Canada. Blacklegged tick nymphs and, similarly, larval and nymphal rabbit ticks were tested for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (Bbsl), using PCR and the flagellin (flaB) gene, and 14 (42%) of 33 of blacklegged tick nymphs tested were positive. In contrast, larval and nymphal H. leporsipalustris ticks were negative for Bbsl. The occurrence of Bbsl in I. scapularis nymphs brings to light the presence of a Lyme disease endemic area at this songbird nesting locality. Because our findings denote that this area is a Lyme disease endemic area, and I. scapularis is a human-biting tick, local residents and outdoor workers must take preventive measures to avoid tick bites. Furthermore, local healthcare practitioners must include Lyme disease in their differential diagnosis

    Activity Patterns of the Endangered Amargosa Vole (Microtus californicus scripensis)

    Get PDF
    Examining the activity patterns of wildlife is an important aspect of understanding the ecology of a species and may be especially important for species of conservation concern. We used remotely triggered cameras to describe the daily and seasonal activity patterns and examine ecological factors that influence the activity of the Amargosa Vole (Microtus californicus scirpensis), a California endemic listed federally and by the state as Endangered, and is a marsh habitatspecialist in the Mojave Desert. We found that vole activity was greatest during crepuscular periods, followed by nocturnal and diurnal periods. We saw strong seasonal effects, with the highest activity occurring in spring (March-May). Daily activity patterns varied at different times of the year, with lower activity during periods of seasonal temperature extremes. Daily high temperatures, however, were only weakly related to activity, and precipitation was not associated with changes in activity patterns. Of the factors we examined, marsh area was the most important factor in predicting vole activity, with larger marshes having higher vole activity than smaller marshes. Predation seemed to be strong driver of vole activity, with higher activity during periods of lower potential predation risk (crepuscular and new-moon periods), suggesting that voles may decrease their activity to avoid predators during periods when predators may more easily detect them (e.g., full moon). By highlighting factors that influence vole activity, we show the importance of understanding activity patterns relative to the ecology and conservation of this species

    Modeling Potential Habitat for Amblyomma Tick Species in California

    Get PDF
    The Amblyomma genus of ticks comprises species that are aggressive human biters and vectors of pathogens. Numerous species in the genus are undergoing rapid range expansion. Amblyomma ticks have occasionally been introduced into California, but as yet, no established populations have been reported in the state. Because California has high ecological diversity and is a transport hub for potentially parasitized humans and animals, the risk of future Amblyomma establishment may be high. We used ecological niche modeling to predict areas in California suitable for four tick species that pose high risk to humans: Amblyomma americanum, Amblyomma maculatum, Amblyomma cajennense and Amblyomma mixtum. We collected presence data in the Americas for each species from the published literature and online databases. Twenty-three climatic and ecological variables were used in a MaxEnt algorithm to predict the distribution of each species. The minimum temperature of the coldest month was an important predictor for all four species due to high mortality of Amblyomma at low temperatures. Areas in California appear to be ecologically suitable for A. americanum, A. maculatum, and A. cajennense, but not A. mixtum. These findings could inform targeted surveillance prior to an invasion event, to allow mitigation actions to be quickly implemented
    corecore