20 research outputs found

    Erratum: Correction to: Characteristics of therapeutic alliance in musculoskeletal physiotherapy and occupational therapy practice: a scoping review of the literature (BMC health services research (2017) 17 1 (375))

    Get PDF
    CORRECTION: Following publication of the original article [1], an erratum was initiated in order to include supplementary material that was not updated and not included during the online submission of the authors\u27 corrections. The additional corrections, included below, are to Appendix II. The original article has been corrected

    Development and usability testing of a web-based and therapist-assisted coping skills program for managing psychosocial problems in individuals with hand and upper limb injuries: Mixed methods study

    Get PDF
    © 2020 Folarin Omoniyi Babatunde, Joy MacDermid, Ruby Grewal, Luciana Macedo, Mike Szekeres. Background: Ineffective coping has been linked to prolonged pain, distress, anxiety, and depression after a hand and upper limb injury. Evidence shows that interventions based on cognitive behavioral therapy (CBT) may be effective in improving treatment outcomes, but traditional psychological interventions are resource intensive and unrealistic in busy hand therapy practices. Developing web-based, evidence-based psychological interventions specifically for hand therapy may be feasible in clinical practice and at home with reduced training and travel costs. Hand Therapy Online Coping Skills (HOCOS) is a program developed to supplement traditional hand therapy with therapist-assisted coping skills training based on principles from CBT and the Technology Acceptance Model. Objective: This study aimed to describe the development and assess the usability of HOCOS to support hand therapists in the management of psychosocial problems. Methods: The ADDIE model (Analysis, Design, Development, Implementation, and Evaluation) of system design was applied to create HOCOS. The usability testing of HOCOS involved a 2-stage process. In the first step, heuristic testing with information and communications technology (ICT) experts was completed using two sets of heuristics: Monkman heuristics and the Health Literacy Online (HLO) checklist. The second step involved user testing with hand therapists performing a series of online and face-to-face activities, completing 12 tasks on the website using the think-aloud protocol, completing the system usability scale (SUS) questionnaire, and a semistructured feedback interview in 2 iterative cycles. Descriptive statistics and content analyses were used to organize the data. Results: In total, 4 ICT experts and 12 therapists completed usability testing. The heuristic evaluation revealed 15 of 35 violations on the HLO checklist and 5 of 11 violations on the Monkman heuristics. Initially, hand therapists found 5 tasks to be difficult but were able to complete all 12 tasks after the second cycle of testing. The cognitive interview findings were organized into 6 themes: Task performance, navigation, design esthetics, content, functionality and features, and desire for future use. Usability issues identified were addressed in two iterative cycles. There was good agreement on all items of the SUS. Overall, therapists found that HOCOS was a detailed and helpful learning resource for therapists and patients. Conclusions: We describe the development and usability testing of HOCOS; a new web-based psychosocial intervention for individuals with a hand and upper limb injuries. HOCOS targets psychosocial problems linked to prolonged pain and disability by increasing access to therapist-guided coping skills training. We actively involved target users in the development and usability evaluation of the website. The final website was modified to meet the needs and preferences of the participants

    Detection of Alpha- and Betacoronaviruses in Frugivorous and Insectivorous Bats in Nigeria

    Get PDF
    The rise of bat-associated zoonotic viruses necessitates a close monitoring of their natural hosts. Since the detection of severe acute respiratory syndrome coronavirus (SARS-CoV), it is evident that bats are vital reservoirs of coronaviruses (CoVs). In this study, we investigated the presence of CoVs in multiple bat species in Nigeria to identify viruses in bats at high-risk human contact interfaces. Four hundred and nine bats comprising four bat species close to human habitats were individually sampled from five states in Nigeria between 2019 and 2021. Coronavirus detection was done using broadly reactive consensus PCR primers targeting the RNA-dependent RNA polymerase (RdRp) gene of CoVs. Coronavirus RNA was detected in 39 samples (9.5%, CI 95%: [7.0, 12.8]), of which 29 were successfully sequenced. The identified CoVs in Nigerian bats were from the unclassified African alphacoronavirus lineage and betacoronavirus lineage D (Nobecovirus), with one sample from Hipposideros ruber coinfected with alphacoronavirus and betacoronavirus. Different bat species roosting in similar or other places had CoVs from the same genetic lineage. The phylogenetic and evolutionary dynamics data indicated a high CoV diversity in Nigeria, while host switching may have contributed to CoV evolution. Robust sentinel surveillance is recommended to enhance our knowledge of emerging and re-emerging coronaviruses

    From Ebola to COVID-19: emergency preparedness and response plans and actions in Lagos, Nigeria

    Get PDF
    BACKGROUND: Lagos state is the industrial nerve centre of Nigeria and was the epicentre of the 2014 Ebola outbreak in Nigeria as it is now for the current Coronavirus Disease (COVID-19) outbreak. This paper describes how the lessons learned from the Ebola outbreak in 2014 informed the emergency preparedness of the State ahead of the COVID-19 outbreak and guided response. DISCUSSION: Following the Ebola outbreak in 2014, the Lagos State government provided governance by developing a policy on emergency preparedness and biosecurity and provided oversight and coordination of emergency preparedness strategies. Capacities for emergency response were strengthened by training key staff, developing a robust surveillance system, and setting up a Biosafety Level 3 laboratory and biobank. Resource provision, in terms of finances and trained personnel for emergencies was prioritized by the government. With the onset of COVID-19, Lagos state was able to respond promptly to the outbreak using the centralized Incident Command Structure and the key activities of the Emergency Operations Centre. Contributory to effective response were partnerships with the private sectors, community engagement and political commitment. CONCLUSION: Using the lessons learned from the 2014 Ebola outbreak, Lagos State had gradually prepared its healthcare system for a pandemic such as COVID-19. The State needs to continue to expand its preparedness to be more resilient and future proof to respond to disease outbreaks. Looking beyond intra-state gains, lessons and identified best practices from the past and present should be shared with other states and countries

    From Ebola to COVID-19: emergency preparedness and response plans and actions in Lagos, Nigeria

    Get PDF
    Background Lagos state is the industrial nerve centre of Nigeria and was the epicentre of the 2014 Ebola outbreak in Nigeria as it is now for the current Coronavirus Disease (COVID-19) outbreak. This paper describes how the lessons learned from the Ebola outbreak in 2014 informed the emergency preparedness of the State ahead of the COVID-19 outbreak and guided response. Discussion Following the Ebola outbreak in 2014, the Lagos State government provided governance by developing a policy on emergency preparedness and biosecurity and provided oversight and coordination of emergency preparedness strategies. Capacities for emergency response were strengthened by training key staff, developing a robust surveillance system, and setting up a Biosafety Level 3 laboratory and biobank. Resource provision, in terms of finances and trained personnel for emergencies was prioritized by the government. With the onset of COVID-19, Lagos state was able to respond promptly to the outbreak using the centralized Incident Command Structure and the key activities of the Emergency Operations Centre. Contributory to effective response were partnerships with the private sectors, community engagement and political commitment. Conclusion Using the lessons learned from the 2014 Ebola outbreak, Lagos State had gradually prepared its healthcare system for a pandemic such as COVID-19. The State needs to continue to expand its preparedness to be more resilient and future proof to respond to disease outbreaks. Looking beyond intra-state gains, lessons and identified best practices from the past and present should be shared with other states and countries

    Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.

    Get PDF
    Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Correction to: Characteristics of therapeutic alliance in musculoskeletal physiotherapy and occupational therapy practice: a scoping review of the literature

    No full text
    Correction Following publication of the original article [1], an erratum was initiated in order to include supplementary material that was not updated and not included during the online submission of the authors’ corrections. The additional corrections, included below, are to Appendix II. The original article has been corrected
    corecore