441 research outputs found

    Mathematical models for vulnerable plaques

    Get PDF
    A plaque is an accumulation and swelling in the artery walls and typically consists of cells, cell debris, lipids, calcium deposits and fibrous connective tissue. A person is likely to have many plaques inside his/her body even if they are healthy. However plaques may become "vulnerable", "high-risk" or "thrombosis-prone" if the person engages in a high-fat diet and does not exercise regularly. In this study group, we proposed two mathematical models to describe plaque growth and rupture. The first model is a mechanical one that approximately treats the plaque as an inflating elastic balloon. In this model, the pressure inside the core increases and then decreases suggesting that plaque stabilization and prevention of rupture is possible. The second model is a biochemical one that focuses on the role of MMPs in degrading the fibrous plaque cap. The cap stress, MMP concentration, plaque volume and cap thickness are coupled together in a system of phenomenological equations. The equations always predict an eventual rupture since the volume, stresses and MMP concentrations generally grow without bound. The main weakness of the model is that many of the important parameters that control the behavior of the plaque are unknown. The two simple models suggested by this group could serve as a springboard for more realistic theoretical studies. But most importantly, we hope they will motivate more experimental work to quantify some of the important mechanical and biochemical properties of vulnerable plaques

    A desktop extreme ultraviolet microscope based on a compact laser-plasma light source

    Get PDF
    A compact, desktop size microscope, based on laser-plasma source and equipped with reflective condenser and diffractive Fresnel zone plate objective, operating in the extreme ultraviolet (EUV) region at the wavelength of 13.8 nm, was developed. The microscope is capable of capturing magnified images of objects with 95-nm full-pitch spatial resolution (48 nm 25–75% KE) and exposure time as low as a few seconds, combining reasonable acquisition conditions with stand-alone desktop footprint. Such EUV microscope can be regarded as a complementary imaging tool to already existing, well-established ones. Details about the microscope, characterization, resolution estimation and real sample images are presented and discussed

    Anisotropic diffusion in continuum relaxation of stepped crystal surfaces

    Full text link
    We study the continuum limit in 2+1 dimensions of nanoscale anisotropic diffusion processes on crystal surfaces relaxing to become flat below roughening. Our main result is a continuum law for the surface flux in terms of a new continuum-scale tensor mobility. The starting point is the Burton, Cabrera and Frank (BCF) theory, which offers a discrete scheme for atomic steps whose motion drives surface evolution. Our derivation is based on the separation of local space variables into fast and slow. The model includes: (i) anisotropic diffusion of adsorbed atoms (adatoms) on terraces separating steps; (ii) diffusion of atoms along step edges; and (iii) attachment-detachment of atoms at step edges. We derive a parabolic fourth-order, fully nonlinear partial differential equation (PDE) for the continuum surface height profile. An ingredient of this PDE is the surface mobility for the adatom flux, which is a nontrivial extension of the tensor mobility for isotropic terrace diffusion derived previously by Margetis and Kohn. Approximate, separable solutions of the PDE are discussed.Comment: 14 pages, 1 figur

    Corrections to Einstein's relation for Brownian motion in a tilted periodic potential

    Get PDF
    In this paper we revisit the problem of Brownian motion in a tilted periodic potential. We use homogenization theory to derive general formulas for the effective velocity and the effective diffusion tensor that are valid for arbitrary tilts. Furthermore, we obtain power series expansions for the velocity and the diffusion coefficient as functions of the external forcing. Thus, we provide systematic corrections to Einstein's formula and to linear response theory. Our theoretical results are supported by extensive numerical simulations. For our numerical experiments we use a novel spectral numerical method that leads to a very efficient and accurate calculation of the effective velocity and the effective diffusion tensor.Comment: 29 pages, 7 figures, submitted to the Journal of Statistical Physic

    Computation tools for the combat of cardiovascular heart disease

    Get PDF
    The paper discusses two potential applications of computational technologies to combat cardiovascular heart disease in Singapore. The first application involves the exploitation of neural networks for the risk prediction of coronary heart disease. The second application involves the potential integration of artificial intelligence and high performance modelling with clinical biology for the analysis and visualisation of atherosclerosis related structure. The implementation of these computation tools in phases constitutes initial efforts in the development of a digital clinical atherosclerosis laboratory to assist in the prevention and treatment of cardiovascular heart disease

    Four Generations: SUSY and SUSY Breaking

    Get PDF
    We revisit four generations within the context of supersymmetry. We compute the perturbativity limits for the fourth generation Yukawa couplings and show that if the masses of the fourth generation lie within reasonable limits of their present experimental lower bounds, it is possible to have perturbativity only up to scales around 1000 TeV. Such low scales are ideally suited to incorporate gauge mediated supersymmetry breaking, where the mediation scale can be as low as 10-20 TeV. The minimal messenger model, however, is highly constrained. While lack of electroweak symmetry breaking rules out a large part of the parameter space, a small region exists, where the fourth generation stau is tachyonic. General gauge mediation with its broader set of boundary conditions is better suited to accommodate the fourth generation.Comment: 27 pages, 5 figure
    corecore