741 research outputs found

    Nanoimaging using soft X-ray and EUV laser-plasma sources

    Get PDF
    In this work we present three experimental, compact desk-top imaging systems: SXR and EUV full field microscopes and the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources based on a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths are capable of imaging nanostructures with a sub-50 nm spatial resolution and short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range and produces an imprint of the internal structure of the imaged sample in a thin layer of SXR sensitive photoresist. Applications of such desk-top EUV and SXR microscopes, mostly for biological samples (CT26 fibroblast cells and Keratinocytes) are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications

    On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics

    Get PDF
    Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents

    Exponential Distribution of Locomotion Activity in Cell Cultures

    Get PDF
    In vitro velocities of several cell types have been measured using computer controlled video microscopy, which allowed to record the cells' trajectories over several days. On the basis of our large data sets we show that the locomotion activity displays a universal exponential distribution. Thus, motion resulting from complex cellular processes can be well described by an unexpected, but very simple distribution function. A simple phenomenological model based on the interaction of various cellular processes and finite ATP production rate is proposed to explain these experimental results.Comment: 4 pages, 3 figure

    Bioimaging using full field and contact EUV and SXR microscopes with nanometer spatial resolution

    Get PDF
    We present our recent results, related to nanoscale imaging in the extreme ultraviolet (EUV) and soft X-ray (SXR) spectral ranges and demonstrate three novel imaging systems recently developed for the purpose of obtaining high spatial resolution images of nanoscale objects with the EUV and SXR radiations. All the systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes—operating at 13.8 nm and 2.88 nm wavelengths, respectively—are currently capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The third system is a SXR contact microscope, operating in the “water-window” spectral range (2.3–4.4 nm wavelength), to produce an imprint of the internal structure of the investigated object in a thin surface layer of SXR light sensitive poly(methyl methacrylate) photoresist. The development of such compact imaging systems is essential to the new research related to biological science, material science, and nanotechnology applications in the near future. Applications of all the microscopes for studies of biological samples including carcinoma cells, diatoms, and neurons are presented. Details about the sources, the microscopes, as well as the imaging results for various objects will be shown and discussed

    Bioimaging using full field and contact EUV and SXR microscopes with nanometer spatial resolution

    Get PDF
    We present our recent results, related to nanoscale imaging in the extreme ultraviolet (EUV) and soft X-ray (SXR) spectral ranges and demonstrate three novel imaging systems recently developed for the purpose of obtaining high spatial resolution images of nanoscale objects with the EUV and SXR radiations. All the systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes-operating at 13.8 nm and 2.88 nm wavelengths, respectively-are currently capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The third system is a SXR contact microscope, operating in the "water-window" spectral range (2.3-4.4 nm wavelength), to produce an imprint of the internal structure of the investigated object in a thin surface layer of SXR light sensitive poly(methyl methacrylate) photoresist. The development of such compact imaging systems is essential to the new research related to biological science, material science, and nanotechnology applications in the near future. Applications of all the microscopes for studies of biological samples including carcinoma cells, diatoms, and neurons are presented. Details about the sources, the microscopes, as well as the imaging results for various objects will be shown and discussed

    Corrections to Einstein's relation for Brownian motion in a tilted periodic potential

    Get PDF
    In this paper we revisit the problem of Brownian motion in a tilted periodic potential. We use homogenization theory to derive general formulas for the effective velocity and the effective diffusion tensor that are valid for arbitrary tilts. Furthermore, we obtain power series expansions for the velocity and the diffusion coefficient as functions of the external forcing. Thus, we provide systematic corrections to Einstein's formula and to linear response theory. Our theoretical results are supported by extensive numerical simulations. For our numerical experiments we use a novel spectral numerical method that leads to a very efficient and accurate calculation of the effective velocity and the effective diffusion tensor.Comment: 29 pages, 7 figures, submitted to the Journal of Statistical Physic

    Ground State Hyperfine Structure of Muonic Helium Atom

    Full text link
    On the basis of the perturbation theory in the fine structure constant α\alpha and the ratio of the electron to muon masses we calculate one-loop vacuum polarization and electron vertex corrections and the nuclear structure corrections to the hyperfine splitting of the ground state of muonic helium atom (ÎŒe24He)(\mu e ^4_2He). We obtain total result for the ground state hyperfine splitting ΔΜhfs=4465.526\Delta \nu^{hfs}=4465.526 MHz which improves the previous calculation of Lakdawala and Mohr due to the account of new corrections. The remaining difference between the theoretical result and experimental value of the hyperfine splitting equal to 0.522 MHz lies in the range of theoretical error and requires the subsequent investigation of higher order corrections.Comment: Talk presented at the scientific session-conference of Nuclear Physics Department RAS "Physics of fundamental interactions", 25-30 November 2007, ITEP, Moscow, 18 pages, 5 figure
    • 

    corecore